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On time scales of 10 to 50 years (and longer) decadal climate forecasts are difficult to make with
general circulation climate models due to their many uncertainties [IPCC, 2007]. We will use the
methodology first used by Schonwiese and Bayer in "Some statistical aspects of anthropogenic and
natural forced global temperature change", 1995. We will model global temperature by with a
multiforced lagged regression by combining ENSO, Volcanic Aerosols, Irradiance, and the effects of
Anthropogenic Influence.

Analysis

Using the most recently available characterizations of ENSO, E, volcanic aerosols, V, solar irradiance,
S, and anthropogenic influences, A, we perform multiple linear regression analysis to decompose
monthly mean surface temperature anomalies since 1980 into four components.

Monthly mean surface temperature anomalies AT,,s are reconstructed as:

ATpg(t) = co + cE«E(t - AtE) + cV«V(t - Atv) + cS«S(t - ts) + cA«A(t - tA)

Where E, V, S and A are the time series and the lags (in months) are Ate= 7, Atv= 8, and Ats= 2 and
Ata= 17 years. The lags are chosen to maximize the proportion of global variability that the statistical
model captures and are spatially invariant (although a geographical dependence is expected). The fitted
coefficients, c,. . ., are obtained by multiple linear regression against the instrumental surface

temperature record (HadCRUT4). The Temp data was median smooth within a 7 month period.

The multivariate ENSO index, E, is a weighted average of the main ENSO features contained in
sea-level pressure, surface wind, surface sea and air temperature, and cloudiness [Wolter and Timlin,
1988]. Volcanic aerosols, V, in the stratosphere are compiled by Sato et al. [1993] since 1850, updated
from giss.nasa.gov to 1999 and extended to the present with zero values. Although some volcanic
activity occurred between 2006 and 2008, it is difficult to calculate the aerosol optical depth because of
the lack of direct quantitative space-based observations. Solar irradiance, S, is estimated as the
competing effects of sunspots and facular, identified in observations made by space-based radiometers
[Lean et al., 2005]. The anthropogenic influence, A, is the Forcing Effect of the concentration (ppm) of
co2.

Climate Forecasting:
Using global and regional surface temperature responses to the four individual influences parameterized

by regression against the observations from 1980 to 2008, we forecast change from 2009 to 2020 by
adopting the best estimate of how each influence will change in the future. The anthropogenic forcing in the
past 40 years is well represented by a linear trend that we extrapolate into the future.

We assume that future solar irradiance cycles replicate cycle 23, with cycle 24

(See: http://www.leapcad.com/Climate Analysis/Climate Data-Proxies and Reconstructions.pdf
pg. 21 ) commencing at the beginning of 2009. Although solar activity (as indicted by sunspot numbers)
was less in cycle 23 than in cycles 21 and 22, the total irradiance amplitude (near 0.1%) is similar in the
three past cycles since it is the net effect of sunspot darkening and facular brightening, both of which are
altered by solar activity. Since ENSO fluctuations and volcanic eruptions are not predictable on decadal
time scales, we estimate their maximum likely future impact with a scenario that includes a Pinatubo-like
eruption with peak impact in 2014 and a super ENSO with maximum impact in 2019, mimicking a similar
sequence that occurred from 1992 to 1997 (Figure Stratospheric Optical Depths).




The Data: Temperature, ENSO Index, Volcanic Aerosols, Anthropogenic (CO2 ppm)

HadCrut Temperature and CO2 ppm
http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3vgl.txt Monthly Temp Data 1850 to 2009

http://www.cru.uea.ac.uk/cru/data/temperature/HadCRUT4-gl.dat Monthly Temp Data 1850 to May 2013
Read data from http://www.esrl.noaa.gov/gmd/ccgg/trends/co2_data_mlo.

MLCO2 Columns: Year, Month, Decimal Year, Average, Interpolated, Trend
MLCO2 := READPRN("co2_mm_mlo6-15.txt")

Date := MLC02<2> COZML = MLC02<4> TrendCO2 := MLC02<5> RD := rows(Date)

MLC02262’ )= 1980.042

Get CO2 Trend Line from 1990 to 2015, then project to 2020

Date|gg() = submatrix(Date,383,RD — 1,0,0) Lego = line(Datelggo,submatrix(TrendC02,383,RD - 1,0,0))

m
Trend . ~(Year) := L0020 + L0021'Year Co := 340 = 0..12-10 Yr2020m = 2010 + E

co2
. —2 2 —1
Keeling(yr) := 1.054-10 ~(yr — 1960)" + 9-10 ~-(yr — 1960) + 315.5
SipleCO2 := READPRN("Friedli Siple CO2 1986.TXT") IceCO2:= READPRN("CO2 Ice Core Data.txt" )

http://www.wasserplanet.becsoft.de/180C0O2/CO2tot1812-2007.txt
Column C: CO2 total 1812-1961 corrected. annual averages from raw data.
HaCrutE4 is HadCrut4 with the repeated rows deleted
HadCrutz := READPRN("hadcrut3vgl.txt") rows(HadCrutz) = 320 cols(HadCrutz) =14 nz:=0..159

HadCrutE4 .= READPRN("HadCrutE4-2015.txt") rows(HadCrutE4) = 165 cols(HadCrutE4) = 14

HadCrut := READPRN("HadCrutE4-2015.txt") Time gy, = Had Clm<o>

12
1 N
TCrutz = Z (Hadcmznz,m‘ 12) TCrut := HadCrut'> TCrutPlus = (&(TCrut) TCrut)

m=1
Note: For this plot, years 1980 - 2014 show a solid plus warming.

Global Temp (Bars) & CO2 Levels (Black Line) vs. Time
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ENSO Index Monthly Data from 1950 to 2015

http://www.esrl.noaa.gov/psd/people/klaus.wolter/MEIl/mei.html Monthly ENSO Data 1850 to 2009

http://www.esrl.noaa.gov/psd/data/climateindices/list/ Month
MEIM := READPRN("censo.data-2015.txt") Nl%v:: rows(MEIM) m=0.(R-1)12+ 11
MEIx := submatrix(MEIM,0,R —1,1,12) MEIM32 0= 1980

= d(rr, 12
MEI = MEIx (H) MEID = (MEIM<0>) (“j | Ino (rr, 12)
floor] — |, mod(rr, 12) T floor|] — 12
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Pacific Decadal Oscillation (PDOI) Index Monthly from 1900 to 2015

Note: ENSO and PDO are not statistically independent. They have a 47% correlation.
http://jisao.washington.edu/data/pdo/  Year, Jan to Dec
PDO := READPRN("PDO_Index.dat" )I

PDO := READPRN("pdo.data-2015.txt" ) R =r1ows(PDO) =68 1r:=0..(R-1)-12+ 11
d(rr, 12
PDOIL_:= PDOx PpOYr = (PDOY) () 4 Tmodlr.12)
T T T floor] — 12
ﬂoor(—) ,mod(rr, 12) 12
12
PDOSO, 0="
PDO Index
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Stratospheric Volcanic Aerosols
Note: Volcanic Aerosols and ENSO are not statistically independent. Corr = 40%
http://data.giss.nasa.gov/modelforce/strataer/ Data: Global, NH, SH

READPRN("Aerosols-Monthly-Mean Optical Thickness_tau_line-2012-2015-Repeated.txt" )

VA1560, 0= 1980.04:

Stratospheric Aerosol Optical Depths - Sato
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PMOD Satelite Daily Solar Irradiance (from 1980) and IPCC AR5 Monthly Reconstruction from 1610

TSIppop = READPRN("TSLPMODF_15.TXT") TSIppoD, |, = 500101
TAM, Convert Daily to Monthly Average TSI 2014 is Yearly
TSIMAO6 := READPRN("TSIMonthAvg-2006Data.txt" ) TSIgmy = READPRN("TSIsm8.txt")

TSIMon := DMAvg(TSIppop)

PMOD Total Solar Irradiance (Red), Smoothed (Yellow), Monthly (Blue)
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Reconstruction of Solar Irradiance since 1610, Lean 1995 (1600-1995
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/contributions_by author/lean1995/

TSDjgpp = READPRN("TSDLeanFilled.txt" )
TSDFj,,,, = READPRN("lean1995data.txt" )

Solar Irradiance Correlates with U.S. Temp Anomaly

To even comparison of PMOD (Green Dash) and Lean Reconstructed on same graph, add 1.5 to PMOD

Lean Reconstructed Solar Irradiance (Red), PMOD +1.5 (Green), and Temp Anomaly (Blue)
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Temp (C)

Zonal Variation of Irradiance
http://data.giss.nasa.gov/cgi-bin/cdrar/effij.py
IrradZonal := READPRN("Irradiance zonalO1.dat" )

Mean Zonal Irradiance
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Monthly Time Series Matrices with Optimized Lags for Period 1980 to 2006
Let Y be the Temp and X1, X2, X3, and X4 be the delayed matrices for ENSO, Irradiance, Volcanic
Aerosols, and Anthropogenic Influence.

HadCrut Temperature Data 2015: HCrutE4

HadCrut = 1980 2015 - 1980 = 35 YX:=35 ”5:=0..YX YrEvenr

129,0 5= 129 + 125 o= 0.1

2

HadCrutDatrZin := HadCrut 1294125, 1 HadCrutMDat &: rows(HadCrutDat) L= 0..(R=-1)12+ 11

d(rr, 12 =
HCTime := (HadCrutDat<0>) [rrj + modrr, 12) HCTemerr HadCrutDat ‘{
Ir floor| — floo

| mod(rr, 12)+1
— |, mod(1r,
12 =

Smooth the Temp Data for Regression HCTemp := medsmooth(HCTempX,7)  rows(HCTemp) = 432

Y := submatrix(HCTemp,0,12-YX,0,0) Yeary := submatrix(MEID, 384,384 + 12-YX,0,0) MEID384 = 1980

HadCrut Monthly Global Temp (Bars) vs. Time
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Empirical Component Data for 1980 to 2006, X1, X2, X3, X4, Given Optimized Lags (Months), At:
The Optimization Procedure to Find the Optimized Delays (Months): 3, 6, 0, 1712, follows on pg. 7

Lag Operator At(X, NStart, #Years.t): At(X, Nggy(> Yrs,T) := submatrix(X,Nggy¢ = T-Nggarg = T + 12-Y15,0,0)

Define Forcing Parameters: X are normal forcings, Xs are Gasussian Smoothed

X1 = ENSO (E): 1980 through 2005 Ate=7, xI:= At(MEI,384,YX,7 MEID384 =1980 rows(x1) =42
pl == mean(x1) ol := stderr(YearY,xl) z1:= (x1 — pl)-ol ! xsl = ksmooth(YearY,zl, 12)

X2 = Monthly Volcanic Aerosols (V), Tv= 8, VA1560 0 =1980.042
m = 0..100 Zerosm =0 VAZ = stack(VA<l> ,Zeros) x2 = At(VAZ,1560,YX,8)
M2 == mean(x2) g2 := stderr(YearY,XZ) 72:= (x2 — p2)-02 ! xs2 = ksmooth(YearY,z2,2)

X3 = Solar Irradiance (S), 1s= 2

X3 = At(TSIPMOD<2> R 13,YX,4) K3 == mean(x3) o3 = stderr(YearY,x3) z3 = (x3 — u3)~0’3_

xs3 := ksmooth(YearY, z3, 2)

1

X4 = Anthropogenic Forcing, AF, of CO2 ppm (A), Ta= 1017 (17 Yr Delay)
Assume total radiative forcing (includes CH4) is proportional to radiative forcing due to carbon dioxide.
AF(C) := 4. 8411n(§ ) +0.0906-(y/C =y/Co)  AFypr((C) = 6.3ln(C£)

)

CO2,pn = A(TrendC0O2,261,YX,17-12) x4 := AFpc(CO2

opm) Date,, = 1980.042

p4 := mean(x4) o4 = stderr(YearY,x4) 74 = (x4 — pA)-0'4_ ! xs4 = ksmooth(YearY,z4,2)
X5 = Pacific Decadal Oscillation (PDO) Index (PDO), o= 10*17)

x5 := At(PDOI, 384, YX,  uS := mean(x5) o5 = stderr(YearY,XS) z5 = (x5 - uS)-O'S_

Multi-Variate Component Construction and Design Matrix (Optimized Lags):
Y= Bo + 61-X1i + 62-)(21 + B3~X3i + B4-X4i + €

The design matrix for our Temp Stats data can be constructed with the components i=0.313-1
ONEi =1 ENSO Volcanic Aerosols  Solar Anthro - Effects CO2
X<O> = ONE <l> z1 X<2> =72 X<3> =173 X<4> = z4
Xs <0> = ONE s< 1> = xsl Xs<2> = Xs2 Xs<3> = Xs3 Xs<4> = xs4
MWV MWV MWV
= ( ) -(XT Y) bl = (0.58935 0.0421 —0.0605 0.00848 0.03128)
! T T

bs = (Xs Xs) -(Xs Y) bs =(0.62585 —0.96799 -0.05185 0.02604 0.01722)
Save Model B Coefficient Results: WRITEPRN("Emp_ESVA_Coefficients.txt") := b

(n (2 (3 (@
AT = bO + bl-X + b2-X + b3-X + b4-X ATs = bsO + bsl-xsl + bs2-xs2 + bs3-xs3 + bs4-xs4

corr(Y,AT) = 0.9038 RSquare := COI‘I‘(Y,AT)2 =0.81685 corlr(Y,ATs)2 =0.72544



Optimization Procedure and Results:

Determine Time Lags to Maximize Correlation (R2) of Regression Model to Global Temperature
Evaluate lags of 0 to 12 Months for ENSO, Aerosols, and Irradiance and 5 to 20 yrs for Effects of CO2 ppm

OptLags(Y) = X<0> <~ ONE

col <~ MaxCorr < 0
for tee 5..12
for tae 0..12
for tie 0..5

for tcyrS e 15..21

X<l> « At(MEIL 384,YX, te)

X<2> «— At(VAZ,1560,YX,ta)

co2ppm «— At(TrendCOZ ,261,YX, tc

(@
X" « AFpc(co2ppm)

,13,YX,ti>

Vs’ 12)

be (XTx) l~(XT-Y)

(v V), (3 (@
AT « bO + bl~X + b2~X + b3-X + b4-X

Corr « corr(Y,AT)2
if Corr > MaxCorr

Optl,o « col

MaxCorr < Corr

Opt<C01> «— (Corr te ta ti tcyrs )T

col < col + 1

Opt

Run Opt Routine and Print Opt Data

OptDat := OptLags(Y)
Optimum: R2 Ate Atv Ats Ata

<OptDat1 0> T

OptDat =(0.8483 7 8 4 17)

Optimization Results
Optimum E, V, S, A Lags:
3, 6, 0, 17 (yrs), respectively.
R2 = 0.85

of 9
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Temp Anomaly (C)

The regression and estimation results are:

The numbers shown in parentheses below the regression coefficients are the magnitudes of their
t-ratios; i.e. the coefficients divided by the standard deviation of the regression coefficient. All but
the coefficient for Sunspot number are significantly different from zero at the 95 percent level of
confidence and they are of the right sign.

Shown below is a comparison of the observed temperature change and the temperature change
predicted by the regression equation. The observations are shown in red and the estimations
from the regression equation are shown in blue.

Another way of viewing the comparison is in the scatter diagram below of the actual and
regression predicted temperature changes.

The t-ratios for the variables included in the regression equation are significant. They explain
76 percent of the variation in the year-to-year temperature change. The insolation and

CO2 ppm both a 76% correlation. Also the effect of the CO2 in the equation includes the effects
of all variables influencing temperature change which are correlated with the general trend on
CO2 concentration but are not in the equation. These would include the effects of
anthropogenic water vapor and anthropogenic cloudiness.

Compare Anthropogenic Forcing Component - (17 Year Laq) = b4*z4 (Green) of AT to Data
b4*z4 is the Optimized Match of Effects of Antro Forcing to Global Temperature Data

Note: The Global Temp data (red) flattens out, while the regression (blue) and CO2 levels rise linearly.

Tmax := max(Y) = 1.05

IPCC CO, Log Forcing Function

C
used in Regression Model. Co = GQ.:= 340  AFpae(C) = 6-31n(c—j
340 ppm. 0

Temp Data (Red), MultiVariate Regression (Blue), b4*z4 (Green)
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Statistical Analysis:

Four Factors - ENSO, Volcanic Aerosols, Insolation, and
CO2 ppm explain 3/4 (76%) of the temperature variation.

int := intercept(Y, AT) S,= RSquare
int = —0.09626 s = 0.81685 0T :=int + s-Y

Scatter Plot: Linear Regression delta T vs Temp Data, Y
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Test for Possible Regression

By extending this test to include p slope parameters Hy: By=Py=Bg=...=B,=0
we have the equivalent test for the H,: no multiple regression relationship
possibility of a multiple regression,

As in simple linear regression, we can associate each data value
with three types of deviations, specifically, the residual error, e

yhat:= X-b e:=Y - yhat

Sum of Squares

We can also use matrices to calculate the sum of squares for residual error,

SSE:= e e SSE = 15.99085

as well as for regression, SSR := yhat — mean(Y)T~(yhat — mean(Y))

The total sum of squares equals = rows(Y) p=4

SST := SSE + SSR DF_REG := p DF_RESID:=n-(p + 1) DF_RESID = 416

Mean Squares
Again, as in simple linear regression, dividing each sum of squares by the corresponding

degrees of freedom provides us with variance estimates. The mean square for residual error

SSE SSR
MSE i= ——— MSR = —— DF_TOTAL:=n-1

"~ DF_RESID " DF_REG
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F Test
The final entry in the table is the F statistic and corresponding p-value for the
significance of an overall multiple regression. Under the null hypothesis of

H,: no regression relationship
_ MSR SSR

the test statistic "~ Mg Rsq:= SST Rsq = 0.73748

has an F distribution with nl := DF_REG n2 := DF_RESID

degrees of freedom. The p-value of the test, then, is given by
p_val .= 1 — pF(F,nl,n2) p_val=0

Summary: Analysis of Variance Table
Summarizing the above for our example,

DF SS MS F

DF_REG =4 SSR =44.92168 MSR = 11.23042 F =292.15792
DF_RESID =416 SSE = 15.99085 MSE = 0.03844 p-value
DF_TOTAL = 420 SST = 60.91254 p_val=0

The amount of variability explained by the linear regression (MSR) is greater than the
amount due to residual error (MSE). The difference is large enough (the p-value is, in fact,
close to 0) to strongly reject the null hypothesis,

Correlations between each pair of variables
in the model can be displayed in matrix form as

FLEX = augment(X , <2> X Y)
j=0.p k==0.p
CORR; | = corrlFLEXY  FLEXY )

STATISTICAL CORRELATIONS TO COMPONENTS

Correlation between "independent" variables
35% correlation between x1 (ENSO) and x2 (Aerosols)

Correlation to Global Temp between:

Y (ATemp) and x1 (ENSO) =-3.5%
Y (ATemp) and x2 (Volcanic Aero) = - 49%
Y (ATemp) and x3 (Solar) =-8.5%

Y (ATemp) and x4 (Anthropogenic) = 87%

1 0.35061 -0.11702 -0.23532 —0.0502 ( x1 ENSO
0.35061 1 0.01393 -0.3596 —0.4888| x2 || Aerosols
CORR =| -0.11702 0.01393 1 0.12867  0.08534| x3 Solar
—0.23532 -0.3596 0.12867 1 0.8736%| x4 CO2
—0.05022 -0.48887 0.08534 0.87369 1 y )\ ATemp



Evaluate t tests

-1
Var_Covar_b:= (XT~X) -MSE ki=0.p
se_by = \/Var_Covar_bk,k se_bT =(0.01208 0.01011 0.01015 0.00964 0.00078)
t tests
—>
b

tT:(48.80282 4.16426 —5.9618 0.87993 40.34912)

2010 to 2020 Climate Forecasting:

Empirical Component Data and Forecast: X1, X2, X3, X4

X1 = ENSO: 1980 through 2010, then mimic 1992 to 1997 twice, Ate=3

X2 = Monthly Volcanic Aerosols, repeat Pinatubo eruption with a peak in 2014, Atv= 6,

X3 = Irradiance: 1980 through 2009, then replicate cycle 23, Ats= 0:

X4 = Anthropogenic, Ata= 17*12 (17 Yr Delay), then maintain trend.

Multi-Variate Component Forecast Model (Bs Determined from Previous Regression):

Yi=Bp+ B X1+ By X2 + 33‘X3i + B4-X4i + €

The design matrix for our Temp Stats data can be constructed with the statements
X<l> = x1 X<2> = x2 X<3> = x3 X<4> = x4
Nbv\:: READPRN("Emp_ESVA_Coefficients.txt" )

ATforecast = bO + bl-xl + b2-x2 + b3~x3 + b4~x4



Temp Anomaly (C)
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The regression and estimation forecast:

Empirical Multi-Variate Regression Model Forecast: Global Temp Anomaly
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