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Statistical test of how well Solar Insolation and CO2 variation 
explain the variation of temperature over the last 50 years.

The change in temperature of a system is proportional to the net inflow of heat to that system. In the
case of the Earth's surface the inflow is due to the influx of shortwave radiation from the Sun. The
outflow is due to the longwave thermal radiation which is proportional to the fourth power of the
absolute temperature of the surface. The level of greenhouse gases such as carbon dioxide (CO2)

affects the proportion of the thermal radiation retained.

Let S be the sunspot number. This is used as a proxy for the intensity of solar radiation at the top of
Earth's atmosphere. If T is the absolute temperature of the Earth's surface then its outgoing

radiation is proportional to σT4, where σ is the Stefan-Boltzmann constant. The proportion of this
thermal radiation which is not retained depends upon the concentration of greenhouses gases in the
atmosphere, one of which is CO2. For the statistical analysis below it is presumed that the 

proportion not retained is a linear function of the concentration of CO2, pCO2.The estimating equation

is then 
∆T a0 a1 S⋅+ b0 b1 pco2⋅−( ) σ⋅ T

4⋅−=
or, equivalently

∆T a0 a1 S⋅+ b0 σ⋅ T
4⋅− b1 pco2⋅ σ⋅ T

4⋅+=

where ∆T is the January-to-January change in temperature. It is important to use the change of
temperature over an interval rather than the change in the annual average. When a variable is, as
temperature is, the cumulative sum of disturbances the process of averaging introduces statistical
artifacts that interfer with the statistical analysis. For more on this topic see stochastic structure.

The temperature in σT4 is however the annual average.

All three of the coefficients, a1, b0 and b1, should be positive if the hypothesis that an increase in
the level of CO2 contributes to an increase in global temperature.

The Data
The data on CO2 concentration are derived from air samples collected at Mauna Loa Observatory,

Hawaii. The source is C.D. Keeling, T.P. Whorf, and the Carbon Dioxide Research Group at the
Scripps Institution of Oceanography, University of California at La Jolla, May 2005. This data covers
only from 1959 to 2004 so this is the interval of analysis.

The temperature data were constructed from the data set available from NASA. The temperature
data goes back to 1880. It is worthwhile to look at some data scatter diagrams to get acquainted
with the statistical characteristics of the data. First consider the times series for the
January-to-January changes in temperatures.

What the diagram shows is that there were some extreme cases in the early years of the series
that had more to do with the accuracy of the data than global climate. This is not a concern for the
statistical work below because the analysis only covers the period for which there are data on CO2

concentrations.

The theory suggests that there should be an inverse correlation between temperature change and
the level of temperature, or more precisely the fourth power of the absolute temperature.



Stat Data for Global Temperature Change 1959-2004
(0)Year,  (1)J-J Change Temp,  (2) AnnualMeanTemp, (3) pCO2,  (4) s*T4,  (5) s*T4*pCO2, (6) #SS

TStats READPRN "Climate Statistics.csv"( ):= n rows TStats( ):=

∆T a0 a1 S⋅+ b0 σ⋅ T
4⋅− b1 pco2⋅ σ⋅ T

4⋅+= Yr TStats 0〈 〉:=

Yi β0 β1 X1i⋅+ β2 X2i⋅+ β
3

X3i⋅+ εi+= y TStats 1〈 〉:=

σ 5.6704 10
8−⋅:= Temp         SunSpots         Radiation         CO2

TAnMean TStats 2〈 〉:= x1 TStats 6〈 〉:= x2 TStats 4〈 〉:= x3 TStats 5〈 〉:=

The design matrix for our Temp Stats data can be constructed with the statements

i 0 n 1−..:= ONE
i

1:= c 0 cols TStats( ) 1−..:= p 3:=

X
0〈 〉

ONE:= X
1〈 〉

x1:= X
2〈 〉

x2:= X
3〈 〉

x3:=
FLEX augment x1 x2, x3, y, ( ):=

b X
T

X⋅( ) 1−
X

T
y⋅( )⋅:= b

T
73.1787 8.10165 10

4−× 0.201− 33.96021( )=

∆T b0 b1 x1⋅+ b2 x2⋅+ b3 x3⋅+:=

corr y ∆T, ( ) 0.72245= RSquare corr y ∆T, ( )
2

0.52193=:= SD
c

stdev TStats c〈 〉( ):=

The regression and estimation results are:

      ∆T = 73.18 + 0.000810 S − (0.201 − 33.961 pCO2) σT4

             (6.68)      (1.60)          (6.7)           (5.87)                 

      R2 = 0.522      Most of R2 comes from the solar insolation

The numbers shown in parentheses below the regression coefficients are the magnitudes of their
t-ratios; i.e. the coefficients divided by the standard deviation of the regression coefficient. All but
the coefficient for Sunspot number are significantly different from zero at the 95 percent level of
confidence and they are of the right sign.

Shown below is a comparison of the observed temperature change and the temperature change
predicted by the regression equation.  The observations are shown in red and the estimations
from the regression equation are shown in blue.

Another way of viewing the comparison is in the scatter diagram below of the actual and
regression predicted temperature changes.

Although the t-ratios for the variables included in the regression equation are significant they only
explain 52.2 percent of the variation in the year-to-year temperature change. The
insolation has most of the correlation, not CO2. Also the effect of the CO2 in the equation includes
the effects of all variables influencing temperature change which are correlated with the general
trend on CO2 concentration but are not in the equation. These would include the effects of
anthropogenic water vapor and anthropogenic cloudiness.
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Consider the scatter diagram for temperature change versus temperature. There is a satifying

downward slope to the data plot. When thermal radiation σT4 is used as the independent variable
there is also a downward slope as seen below. But what is clear is that the outliers, the extreme
cases, will dominate the statistical results. This raises a note of caution in interpreting the
statistical results. 
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int intercept y ∆T, ( ):= s RSquare:=

int 8.31423 10
3−×= s 0.52193= δT int s y⋅+:=



Result: Follows a general trend, but Insolation and CO2 
explain only half (52%) of the temperature variation. 

Must be other major factors
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Scatter Plot: Linear Regression vs Temp Data
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Test for Possible Regression

By extending  this test to include p slope parameters

H0:  β1 = β2 = β3 = ... = βp = 0

we have the equivalent test for the possibility of a multiple regression,

H0:  no multiple regression relationship

As in simple linear regression, we can associate each data value
with three types of deviations, specifically, the residual error, e

yhat X b⋅:= e y yhat−:=

Sum of Squares

We can also use matrices to calculate the sum of squares for
residual error,

SSE e
T

e⋅:= SSE 1.08067=

as well as for regression, SSR yhat mean y( )− T
yhat mean y( )−( )⋅:=

The total sum of squares equals

SST SSE SSR+:= DF_REG p:= DF_RESID n p 1+( )−:= DF_RESID 42=

Mean Squares
Again, as in simple linear regression, dividing each sum of squares by the corresponding
degrees of freedom provides us with variance estimates.  The mean square for residual error

MSE
SSE

DF_RESID
:= MSR

SSR

DF_REG
:= DF_TOTAL n 1−:=

F Test
The final entry in the table is the F statistic and corresponding p-value for the
significance of an overall multiple regression.  Under the null hypothesis of

H0:  no regression relationship

F
MSR

MSE
:= Rsq

SSR

SST
:= Rsq 0.52193=the test statistic

has an F distribution with n1 DF_REG:= n2 DF_RESID:=

degrees of freedom. The p-value of the test, then,  is given by

p_val 1 pF F n1, n2, ( )−:= p_val 7.21237 10
7−×=



Analysis of Variance Table
Summarizing the above for our example,  

DF SS MS F

DF_REG 3= SSR 1.17982= MSR 0.39327= F 15.28451=

DF_RESID 42= SSE 1.08067= MSE 0.02573= p-value

DF_TOTAL 45= SST 2.26049= p_val 7.21237 10
7−×=

The amount of variability explained by the linear regression (MSR) is greater than the
amount due to residual error (MSE).  The difference is large enough (the p-value is, in fact, close
to 0) to strongly reject the null hypothesis,
Correlations between each pair of variables in the model can be displayed in matrix form
as 

j 0 p..:= k 0 p..:=

CORRj k, corr FLEX j〈 〉 FLEX k〈 〉, ( ):=

Result: Variables are independent -
 Little Correlation between "independent" variables

x1 x2 x3 y

CORR

1

0.10515

0.05357

0.09464

0.10515

1

0.84069

0.3362−

0.05357

0.84069

1

0.05104

0.09464

0.3362−

0.05104

1


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


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

=
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x3

y
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
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


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

Var_Covar_b X
T

X⋅( ) 1−
MSE⋅:= k 0 p..:=

se_bk Var_Covar_bk k, 
→

:= se_b
T

10.96004 5.05663 10
4−× 0.03 5.78829(=

t tests

t
b

se_b

→

:= tT 6.67687 1.60218 6.69929− 5.86705( )=


