White Zombie EV Performance Simulation WMilyigs..un

The Simulation can be run or modified with Mathcad 14/15. Free Trial at: http://www.ptc.com/product/mathcad/free-trial

Goal: Simulate White Zombie Acceleration Performance

This paper shows a macro model for performance simulation of a White Zombie EV. The key parameters are peak motor torque, peak battery power (SOC), curb weight, maximum tire traction, and some assumptions about the power loss/efficiency: high efficiency induction motors (93\%), and Inverter and power train (87\%). Net System Efficiency, SysEff $\mathbf{\sim} \mathbf{8 1 \%}$. The model shows that for $\mathbf{1 0 0 \%}$ SOC, the time from 0 to 60 mph is $\mathbf{1 . 8} \mathbf{~ s e c}$. This Analysis in done in the following nine Sections. Section IV considers different traction scenarios (Sec IV, pg. 4). Results were caleulated for $100,90,80,70,60,50 \%$ State of Charge (SOC). See last graph pg 5.
NOTE: The Calculations \& graphs in Sections III to VI are shown for $\mathbf{1 0 0 \%}$ SOC.

TABLE OF CONTENTS

I. Introduction - Simple Analysis
II. Macro Model Performance Discussion: 0-60 mph spec \& the horsepower second (hp s)
III. Specifications \& Engineering Estimates: Peak Acceleration
IV. Four Tire Traction \& Control Models: \#1 Perfect Tire Grip, \#2 Tires $\mu=1.4, \mathrm{~g}=1.4$, and \#3 Power Limited 1.4 g
V. Model Results \& Validation - Validates that Simulation Results Meet Specs
VI. Graphs of Model Results
VII. Find the Single Charge Highway Cruise Range for a Given Velocity and Final SOC VIII. Find Mileage Range: Use Constant Velocity \& Three Different EPA Driving Schedules IX. Tire Friction/Grip (Tire Composition and Width)

I. Introduction - Simple Analysis

Examining the White Zombie Specs
White Zombie Specifications
1.8 seconds $0-60 \mathrm{mph}$
10.2 s @ $123 \mathrm{mph} 1 / 4$ mile, 200 mpg (equiv.)
Battery/Inverter Peak Power: $\mathbf{8 4 8} \mathbf{~ h p}$ assuming 81% efficiency
Motor Spec: Max Power 538 hp
Max Torque: $\mathbf{1 2 5 0} \mathbf{f t}$ lbf
Peak Acceleration (): We assume 1.4 g
http://www.plasmaboyracing.com/whitezombie.php

II. Macro Performance Model Discussion \& Description of the Model

Macro Model: Macro Models requires only limited knowledge of internal parameters. We treat the system as a Black Box. That is, we don't know the details of what's inside, just a few fundamental parameters. We are only interested in overall performance. Ignore the intricacies. Simple, but not too simple. May not know what is inside, but regardless, the laws of Physics still apply. We just need basic physical parameters such as:
Vehicle mass (Mcurb), Coefficient of tire friction μ, and radius, Gear Ratio GR, max motor Torque \&
Power, battery power, and System Power Efficiency (Inverter, Gears, and Motors).
The vehicle also has rotational energy from rotating tires, motor rotor, and gear box.
A factor km , which multiplies the mass, accounts for this added rotational mass.
$\mathrm{M}_{\text {curb }}=2532 \mathrm{lbm}, \mu=1.4$ (equivalently, $\max \mathrm{g}=1.4$), $265 / 35 \mathrm{ZR} 21$ tires, tire radius=14 inches, $\mathrm{GR}=9.73$.
Then acceleration (a) is given by:
Newton's Second Law: $\quad a=$ Traction Force $/ m=$ Torque \times GR/Mcurb
See pg 3 for Section on Traction Control.
Then the Torque required to get to $\mathrm{g}=1.4$, requires that Torque be at least:
Torque_max_g = Weight $\mathrm{x} \mathrm{km} \times 1.4 \mathrm{~g}$ tire radius/GR $=\mathbf{6 8 0} \mathbf{f t}$ lbf
The present max Torque spec is $\mathbf{7 1 3} \mathbf{~ f t ~ l b f}$. This is more than sufficient to give 1.4 g .

$$
\mathrm{T}_{\text {max }_{-\mathrm{g}}}:=\mathrm{M}_{\text {curb }} \cdot \mathrm{k}_{\mathrm{m}} \cdot \frac{1.4 \mathrm{~g} \cdot \mathrm{r}_{\text {tire }}}{\mathrm{GR}}
$$

$$
\mathrm{T}_{\max _\mathrm{g}}=444.04 \cdot \mathrm{ft} \cdot \mathrm{lbf}
$$

What is the Estimated Motor Power needed to meet the $0-60 \mathrm{mph}$ in 1.8 s performance, $P_{\text {Spec }}{ }^{\mathbf{0}}{ }^{T}{ }^{\max }:=1250 \mathrm{ft} \cdot \mathrm{lbf}$

Meeting the 0-60 mph in 1.8 s spec and the horsepower second (hp s)

Power $_{\text {max }}:=538 \mathrm{hp}$
There is a basic relationship between Torque, Motor RPM, and Motor Power:
Assume that there is No Traction Control, this is tires can slip.
Thus initially, full torque is applied to the wheels, until max motor power limits the torque.
Refer to the below plot and examine the Power versus time profile.
The Power is given by: Power = Torque x Angular Velocity, until Max Power is reached.
This is shown in the graph below. Tire velocity, $\mathrm{v}_{\mathrm{Pmax}}$, to get to max motor power and Torque $=$ The time to get to max motor power is $\mathrm{t}_{\mathrm{Pmax}}$. The velocity at which this occurs is $\mathrm{v}_{\mathrm{Pmax}}$. There are 2 paths to get to the max power: \#1 Tires allowed to slip and \#2 Tires do not slip (Pg. 3). Assume that the tires do not slip when the vehicle acceleration in gs ($1 \mathrm{~g}=22 \mathrm{mph} / \mathrm{sec}$) is less than the assumed tire coefficient of friction of 1.4.
$\mathrm{RPM}_{\text {motor }}:=\frac{\text { Power }}{\text { Torque } \cdot 2 \cdot \pi}$
Velocity at Max Power
$v_{\text {Pmax }}:=\frac{\text { Power }_{\text {max }} \cdot r_{\text {tire }}}{T_{\text {max }} \cdot G R}$
$\mathrm{v}_{\mathrm{Pmax}}=19.35 \cdot \mathrm{mph}$
$\mathrm{t}_{\text {PeakMotor }}:=0.28 \mathrm{sec}$

$$
\operatorname{Pm}(\omega)=\mathrm{T}(\omega) \cdot \mathrm{k} \cdot 2 \cdot \pi \cdot \omega \mathrm{RPM}
$$

The average power from the start at 0 power to the peak of Power $_{\text {max }}$ is $1 / 2$ Power $_{\text {max }}$. If the time to get motor Power max is $t_{P m t}$, then the Energy is $1 / 2$ Power $_{\max } \times t_{\text {Pmax }}$. This energy is equal to the Kinetic Energy (KE) in going from zero velocity to velocity, v.

The relationship for KE is shown at the right in units of horsepower seconds (hp s).

$$
\begin{aligned}
& M_{\text {gross }}:=M_{\text {curb }}+160 \mathrm{lbm} \\
& \mathrm{KE}(\mathrm{v}):=\frac{1}{2} \cdot \mathrm{M}_{\text {gross }} \cdot \mathrm{k}_{\mathrm{m}} \cdot(\mathrm{v})^{2}
\end{aligned}
$$

Velocity, Total hp/10, Accel(gs) vs. sec

time (sec)
$\mathrm{KE}(60 \mathrm{mph})=615.37 \cdot \mathrm{hp} \cdot \mathrm{s}$

The 2 motor power curves belong to two different Traction Models: \#1: No Traction Control, Red Curve \#2: With Traction Control, Blue Curve
$\mathrm{t}_{\text {Pmt }}$ is the time to Peak Power $=0.18 \mathrm{~s}$ $\mathrm{t}_{\text {gfall }}$ is the time for acceleration (g) to fall below $1.4 \mathrm{~g}=1.68 \mathrm{~s}$.
These times are in seconds.

What Max Power do we need to meet the $0-60 \mathrm{mph}$ in 1.8 s with No Traction Control?

For a vehicle velocity, v, the the Kinetic Energy, KE, to get to v is given by:

What is a hp s(horsepower second)?

Energy if the amount of power extended over time. There are many possible units of energy. Power companies use the kilowatt hour. Another unit of Power x time is the hp-s. This is the average power in hp multiplied by the time in seconds.

$$
\mathrm{E}_{\text {motor }}:=\frac{1}{2} \cdot 538 \mathrm{hp} \cdot 0.18 \mathrm{~s}+538 \mathrm{hp} \cdot(1.8-0.18) \mathrm{sec}
$$

$$
\mathrm{E}_{\text {motor }}=919.98 \cdot \mathrm{hp} \cdot \mathrm{~s}
$$

This demonstrates that $538 \mathbf{h p}$ should be sufficient to meet the 0-60 mph in 1.8 sec spec, but this does not consider all factors.
What follows is a more detailed analysis

III. Specifications \& Engineering Estimates: Peak Acceleration

System Efficiency: SysEff $:=0.81 \%$ SOC Voltages: $\mathrm{V}_{\text {batt_100 }}:=355$ volt $\quad \mathrm{V}_{\text {batt_80 }}:=384$ volt $\mathrm{V}_{\text {batt_50 }}:=360$ volt $\quad \mathrm{V}_{\text {batt }}:=\mathrm{V}_{\text {batt_100 }}$ Results are Shown for $\mathbf{1 0 0 \%}$ State of Charge.
Battery and System Power @ $\mathbf{1 0 0 \%}$ SOC $\quad \operatorname{Power}_{\text {Batt }}:=\mathrm{V}_{\text {batt }} \cdot 2200 \mathrm{~A}=1047.34 \cdot \mathrm{hp} \quad$ Power $_{\text {System }}:=$ Power $_{\text {Batt }} \cdot$ SysEff $=848.34 \cdot \mathrm{hp}$
22.7 kW-hr Battery

De-acceleration Battery Energy Regeneration Factor: Regen $:=0.64$

Max Power:	Power $_{\text {max }}:=538 \cdot \mathrm{hp}$	$\mathrm{RPM}_{\text {max }}:=18000$	$\mathrm{T}_{\text {Split }}:=1.94$	R $:=3.25$
Limit: Power $_{\text {System }}=848.34 \cdot \mathrm{hp}$	Power $_{\text {max }}:=$ Power $_{\text {System }}$	Battery Energy:		060hm
Motor Torque:	Power $_{\text {max }}=538 \cdot \mathrm{hp}$		23.86	
Torque $_{\text {maxOld }}:=707 \cdot \mathrm{ft} \cdot \mathrm{lbf}$	$\mathrm{T}_{\text {waba }}:=1250 \cdot \mathrm{ft} \cdot \mathrm{lbf}$	225/50/15 Tire Radius: G force T/A Drag Radials	$\mathrm{r}_{\text {dinter }}:=\frac{23.86}{2}$ in	$__{\text {Max }}:=\frac{\mathrm{T}_{\text {max }} \cdot \mathrm{GR}}{\mathrm{r}_{\text {tire }}}$
Tire Coefficient of Friction, μ :	$\mu:=1.4$	$\mathrm{car}_{\text {max_g }}:=\mu \cdot \mathrm{g}$	$\mathrm{k}:=1000$	-se
		Curb Weight: $M_{\text {cuchh }}:=2532 \mathrm{lbm} \mathrm{M}_{\text {grassi }}:=\mathrm{M}_{\text {curb }}+160 \mathrm{lbm}=2692 \cdot \mathrm{lbm}$		
Aerodynamic Drag Coeff (TM)	$\mathrm{Cd}:=0.35$	Average	$\mathrm{Vw}:=0 \cdot \mathrm{mph}$	$\mathrm{T}_{\max } \cdot \mathrm{GR}$
Cross Wind Drag Coff:	$\mathrm{Cd}_{\mathrm{cw}}:=0.000014$	Effective Cross Wind V:	$\mathrm{V}_{\mathrm{cw}}:=0 \cdot \mathrm{mph}$	max $\mathrm{M}_{\text {gross }} \cdot \mathrm{k}_{\mathrm{m}} \cdot \mathrm{r}_{\text {tire }} \cdot \mathrm{g}$
Shape Correction Factor:	SCF $:=0.85$	Vehicle Frontal Dimensions:	Af := (57-7.9)	in $77 \cdot$ in $^{\text {in }} \quad \mathrm{gmax}^{\text {max }}=1.45$
Air Density, tire resistance:	$\rho:=1.293 \cdot \frac{\mathrm{gm}}{\text { liter }}$	Drag Frontal Area	$\mathrm{Ad}:=\mathrm{Af} \cdot \mathrm{SCF}$	$\mathrm{Ad}=2.07 \cdot \mathrm{~m}^{2}$
Road Rolling Resistance:	$\mathrm{RR}_{\text {road }}:=0.007$	Tire Rolling Resist, Hys:	$\mathrm{RR}_{\text {tire }}:=0.011$	$\mathrm{T}_{\text {hys }}:=0 \cdot \frac{\mathrm{sec}}{\mathrm{m}}$
Effective Mass Coefficient:	$\mathrm{k}_{\mathrm{m}} \mathrm{m}:=1.0447 \quad$ EPA R	ange Spec for P 85 is 253 mile	sSee page 6 for	EPA_RangeSim := 251mile

IV. Tire Traction \& Control Models: \#1 Perfect Grip, \#2 Tires slip, \#3 No Slip, \#4

Simple Step Model of Tire Traction (Assume perfect weight distribution per motor, i.e. same acceleration at each motor) Depending on road conditions, Tires do not have perfect grip, they may slip. Vehicle acceleration, $a_{\text {veh }}$ is limited to the maximum tire traction $\left(\right.$ tire $\left._{\text {max_g }^{g}}\right)=1.4 \mathrm{~g}$. The tire $\mathrm{rpm} \times \mathrm{GR}=$ motor rpm, but because of slip, tire velocity can be greater than vehicle velocity. Therefore, vehicle acceleration and velocity are not directly proportional to rpm, that is, tires may slip:
Case \#1 $\quad v_{\text {tire }}=v_{\text {vehicle }} \quad$ Case \#2 $\quad v_{\text {tire }}=v_{\text {vehicle }}$

No Traction Control, but no tire slip.
Max motor power and torque are applied to tires. Perfect Tires that do not slip. Acceleration can exceed 1.4 g .

Perfect Traction System and High Performance $g=1.4$ tires. Because of Traction Control and tire slip, effective motor rpm can be greater than vehicle speed during tire slip or Traction Control. Vehicle speed depends on tire coefficient of resistance, μ, which is equal to 1.4. This allows a max of 1.4 g. For Case \#2, we assume Traction Control limits g to 1.4.

Macro Model of Motor Dynamics: Velocity of Tire is v

Angular Velocity Symbol, Ω (units of radians/second) $\quad \Omega(\omega):=2 \pi 1000 \cdot \omega \cdot \min ^{-1} \quad$ RPM $/ 1000$ Symbol, $\omega_{\mathrm{k}} \quad \mathrm{RPM}:=\min ^{-1}$
Angular Vel Ω @Max Power:
Convert velocity to RPM
Tire Velocity at Torque Fall:
Tire Velocity to kRPM:
Road Resistance, Ft:

Air Drag Force, Fa:
Total Opposing Force, Fo:
Torque/Force Falloff Curve:
Tm is Torque of motor Fmot, Tractive Force from motor, not from slipping tires:

$$
\begin{aligned}
& \Omega_{\text {Pmax }}:=\text { Power }_{\max } \cdot \mathrm{T}_{\text {max }}^{-1} \quad \mathrm{RPM}_{\mathrm{Pmax}}:=\frac{\Omega_{\mathrm{Pmax}}}{2 \cdot \pi} \quad \mathrm{RPM}_{\mathrm{Pmax}}=2260.51 \cdot \mathrm{RPM} \\
& \operatorname{VtoRPM}\left(\mathrm{v}_{\mathrm{v}}\right):=\mathrm{v}_{\mathrm{v}} \cdot\left(1000 \cdot 2 \cdot \pi \cdot \mathrm{r}_{\text {tire }} \cdot \mathrm{RPM}\right)^{-1} \quad \omega_{\text {Pfall }}:=\mathrm{RPM}_{\text {Pmax }} \cdot \mathrm{k}^{-1}=2.26 \cdot \mathrm{RPM} \\
& \mathrm{v}_{\text {Tfall }}:=\mathrm{RPM}_{\mathrm{Pmax}} \cdot 2 \cdot \pi \cdot \mathrm{r}_{\text {tire }} \cdot \mathrm{GR}^{-1} \\
& \operatorname{VtokR}\left(\mathrm{v}_{\mathrm{t}}\right):=\mathrm{v}_{\mathrm{t}} \cdot\left(\mathrm{k} \cdot 2 \cdot \pi \cdot \mathrm{r}_{\text {tire }} \cdot \mathrm{RPM}\right)^{-1} \quad \operatorname{VtokR}(60 \cdot \mathrm{mph}) \cdot \mathrm{GR}=2.75 \quad \theta:=0 \\
& \mathrm{Ft}\left(\mathrm{v}_{\mathrm{v}}\right):=\mathrm{M}_{\text {gross }} \cdot \mathrm{g} \cdot\left[\mathrm{~T}_{\text {hys }} \cdot \mathrm{v}_{\mathrm{v}} \cdot \sin (\theta)+\left(\mathrm{RR}_{\text {tire }}+\mathrm{RR}_{\text {road }}\right) \cdot \cos (\theta)+\sin (\theta)\right] \mathrm{RPM}_{\mathrm{pmax}} \text { for Max Power: } \\
& \mathrm{Fa}\left(\mathrm{v}_{\mathrm{v}}\right):=0.5 \cdot \rho \cdot \mathrm{Ad} \cdot\left[\left(\mathrm{v}_{\mathrm{v}}+\mathrm{Vw}_{\mathrm{w}}\right)^{2} \cdot \mathrm{Cd}+\mathrm{Cd}_{\mathrm{cw}} \cdot\left(\mathrm{~V}_{\mathrm{cw}}\right)^{2} \quad \quad\right. \text { Note: For Drag and Road Resistance, } \\
& \operatorname{Fo}\left(\mathrm{v}_{\mathrm{v}}\right):=\mathrm{Fa}\left(\mathrm{v}_{\mathrm{v}}\right)+\operatorname{Ft}\left(\mathrm{v}_{\mathrm{v}}\right) \quad \operatorname{Fo}(60 \cdot \mathrm{mph})=124.33 \cdot \mathrm{lbf} \quad<60 \mathrm{mph} \text { Compared to Ftire, Fo is small. } \\
& \omega_{\mathrm{kmax}}:=15.8 \cdot \mathrm{RPM} \quad \mathrm{~T}_{\mathrm{PLt}}\left(\omega_{\mathrm{k}}\right):=\operatorname{Power}_{\mathrm{max}} \cdot \Omega\left(\omega_{\mathrm{k}}\right)^{-1} \mathrm{~T}_{\mathrm{PLt}}(55)=51.38 \cdot \mathrm{ft} \cdot \mathrm{lbf} \\
& \mathrm{~T}_{\mathrm{m}}\left(\omega_{\mathrm{k}}\right):=\text { if }\left(\omega_{\mathrm{k}} \cdot \mathrm{RPM} \geq \omega_{\text {Pfall }}, \mathrm{T}_{\text {PLt }}\left(\omega_{\mathrm{k}}\right), \mathrm{T}_{\text {max }}\right) \quad \quad \mathrm{P}_{\mathrm{m}}\left(\omega_{\mathrm{k}}\right):=\mathrm{T}_{\mathrm{m}}\left(\omega_{\mathrm{k}}\right) \cdot \mathrm{k} \cdot 2 \cdot \pi \cdot \omega_{\mathrm{k}} \cdot \mathrm{RPM} \\
& \mathrm{~T}_{\mathrm{mv}}\left(\mathrm{v}_{\mathrm{t}}\right):=\mathrm{T}_{\mathrm{m}}\left(\operatorname{VtokR}\left(\mathrm{v}_{\mathrm{t}}\right) \cdot \mathrm{GR}\right) \quad \mathrm{F}_{\mathrm{mot}}\left(\mathrm{v}_{\mathrm{t}}\right):=\frac{\mathrm{GR}}{\mathrm{r}_{\text {tire }}} \cdot \mathrm{T}_{\mathrm{mv}}\left(\mathrm{v}_{\mathrm{t}}\right) \quad \mathrm{F}_{\mathrm{PL}}\left(\mathrm{v}_{\mathrm{t}}\right):=\operatorname{Power}_{\max } \cdot\left(\mathrm{v}_{\mathrm{t}} \cdot \mathrm{mph}\right)^{-1}
\end{aligned}
$$

Solve for Velocity, Acceleration, and Distance versus Time

We are using Mathcad 14, a Computer Math Program, to do the Calculations: http://www.ptc.com/product/mathcad/free-trial
Case 1: Perfect Grip Tires at Maximum Motor Power, No limit on Coefficient of Tire Friction Newton's Third Law of Motion:

Case 2: High Performance 1.4 g Tires \& Motor Drive Limited Accel < $1.4 \mathrm{~g} /$ No Spin, but Max Power a_{2} acceleration is allowed by high $\quad a_{2}(v):=\operatorname{if}\left(a_{1}(v) \geq \operatorname{car}_{\text {max_g }}, \operatorname{car}_{\text {max_g }}, a_{1}(v)\right) \quad$ car $r_{\text {max_g }}=1.4 \cdot g$ performance tires on dry road.

$$
\begin{aligned}
& \operatorname{vel}_{2}(\mathrm{t}):=\operatorname{root}\left(\mathrm{t} \cdot \mathrm{sec}-\int_{0}^{\mathrm{V}} \frac{\mathrm{mph}}{\mathrm{a}_{2}(\mathrm{~V} \cdot \mathrm{mph})} \mathrm{dV}, \mathrm{~V}\right) \cdot \mathrm{mph} \quad \operatorname{time}_{\mathrm{a}_{2}(\mathrm{v})}:=\int_{0}^{\mathrm{v}} \frac{1}{\mathrm{a}_{2}(\mathrm{v})} \mathrm{dv} \quad \begin{array}{l}
\mathrm{vel}_{2}(1.8)=55.01 \cdot \mathrm{mph} \\
\mathrm{a}_{2}\left(\mathrm{v}_{\text {grall }} \mathrm{mph}\right)=1.4 \cdot \mathrm{~g}
\end{array} \\
& \text { distance }_{2}(\mathrm{t}):=\int_{0}^{\mathrm{t}} \operatorname{vel}_{2}(\mathrm{t}) \tau \mathrm{dt} \quad \mathrm{a}_{2 \mathrm{t}}(\mathrm{t}):=\mathrm{a}_{2}\left(\mathrm{vel}_{2}(\mathrm{t})\right) \quad \mathrm{a}_{2 \mathrm{t}}(0 \mathrm{mph})=1.4 \cdot \mathrm{~g} \quad \begin{array}{l}
\mathrm{a}_{2}\left(\mathrm{v}_{\mathrm{gfall}} \mathrm{mph}\right)=1.4 \cdot \mathrm{~g} \\
\text { time }_{22}(60 \mathrm{mph})=1.99 \mathrm{~s}
\end{array}
\end{aligned}
$$

Case 3: Traction Control - Tire Force is Power Limited - No Tire Spin (This model not yet perfected)

$$
\begin{aligned}
& \mathrm{P}_{1_{-} 1 \mathrm{~g}}\left(\omega_{\mathrm{k}}\right):=\mathrm{T}_{1_{-} \mathrm{lg}} \cdot \omega_{\mathrm{k}} \cdot \mathrm{k} \cdot 2 \cdot \pi \cdot \mathrm{RPM} \quad \quad \mathrm{P}_{1_{-} \mathrm{lg}}(5.252)=1204.37 \cdot \mathrm{hp} \quad \omega_{3 \text { Pmax }}:=5252 \\
& P_{3}\left(\omega_{k}\right):=T_{3}\left(\omega_{k}\right) \cdot\left(\omega_{k} \cdot k \cdot 2 \cdot \pi \cdot \mathrm{RPM}\right) \quad \mathrm{F}_{3}(\mathrm{v}):=\frac{\mathrm{GR}}{\mathrm{r}_{\text {tire }}} \cdot \mathrm{T}_{3}(\mathrm{VtokR}(\mathrm{v} \cdot \mathrm{mph}) \cdot \mathrm{GR})
\end{aligned}
$$

Case 3: We end up getting the same effective peak torque, we just don't waste the power put into spinning wheels.

VI. Graphs

VII. Find the Single Charge. Highway Cruise Range for a Given Velocity and Final SOC
 Driving Pattern/Profile: Assume we cruise at constant speed, but start, stop, and regen break four times per hour

Drive Train Power Efficiency - Battery Loss for Commanded Vehicle Velocity and Final State of Charge, SOC $_{f}$:

$\mathbf{S O C}_{\mathbf{f}}$ is $\mathbf{1 0 \%}$ at recharge. 400 V HV battery idle power is Po. 12 V battery gives Accessory Power. The Traction Inverter Efficiency - TInvE, HV Power Electronics at Idle Efficiency - IPEE, and Gear Power Efficiency - GPE are 92.5\%, 95\%, and 90\%, respectively. Brake Regen efficiency of kinetic energy is 64%. Then the number of starts per hour as a function of velocity, NS, NumStarts(v, Po), is

Change in State of Charge $=1-$ SOC $_{f}$

$$
\text { TInvE := } 0.925 \quad \text { IPEE }:=0.95 \quad \text { GPE }:=0.9 \quad \text { Regen }:=0.64
$$

$$
\operatorname{Power}_{\text {dissLoss }}\left(\mathrm{v}, \mathrm{P}_{\mathrm{o}}\right):=\frac{\mathrm{Fo}(\mathrm{v}) \cdot \mathrm{v}}{\operatorname{TInvE} \cdot \mathrm{GPE}}+\frac{\mathrm{P}_{\mathrm{o}} \cdot \text { watt }}{\operatorname{IPEE}} \quad \operatorname{Energy}_{\text {accel }}(\mathrm{v}):=\operatorname{Power}_{\text {max }} \cdot \operatorname{time}(\mathrm{v} \cdot \mathrm{mph}) \cdot \mathrm{hr}
$$

Cruise_Range $\left(\mathrm{v}, \mathrm{P}_{\mathrm{o}}, \mathrm{SOC}_{\mathrm{f}}\right):=\frac{\left[\operatorname{Energy}_{\text {bat }}\left(1-\mathrm{SOC}_{\mathrm{f}}\right)-\operatorname{NumStarts}\left(\mathrm{v}, \mathrm{P}_{\mathrm{o}}, \mathrm{SOC}_{\mathrm{f}}\right) \cdot\left[\frac{\operatorname{Regen} \cdot \mathrm{M}_{\text {gross }} \cdot(\mathrm{v})^{2}}{2}(1-\operatorname{Regen})\right] \cdot \mathrm{v}\right.}{\operatorname{Power}_{\text {dissLoss }}\left(\mathrm{v}, \mathrm{P}_{\mathrm{o}}\right)}$

Highway Cruise Range with Four Stops per Hour Estimate

Cruise_Range(v•mph, 200, 0)

Cruise_Range $(30 \cdot \mathrm{mph}, 100,0.1)=123.46 \cdot \mathrm{mi}$
Cruise_Range $(40 \cdot \mathrm{mph}, 100,0.1)=102.07 \cdot \mathrm{mi}$ Cruise_Range $(50 \cdot \mathrm{mph}, 100,0.1)=83.35 \cdot \mathrm{mi}$ Cruise_Range $(60 \cdot \mathrm{mph}, 100,0.1)=68.01 \cdot \mathrm{mi}$ Cruise_Range $(70 \cdot \mathrm{mph}, 100,0.1)=55.82 \cdot \mathrm{mi}$ Cruise_Range $(60 \cdot \mathrm{mph}, 200,0)=75.17 \cdot \mathrm{mi}$

Estimated Single Charge Highway Mileage

Opposing Force Air Resistance, Tire, Road Resistance) Power Loss

$$
\operatorname{Power}_{\text {cruise }}\left(\mathrm{v}, \mathrm{P}_{\mathrm{o}}\right):=\operatorname{Power}_{\text {dissLoss }}\left(\mathrm{v}, \mathrm{P}_{\mathrm{o}}\right) \quad \operatorname{Power}_{\text {cruise }}(70 \cdot \mathrm{mph}, 500)=34.73 \cdot \mathrm{hp}
$$

Cruise Power Curve

velocity (mph)

VIII. Find Mileage Range: Use 3 Different EPA Driving Schedules

Algorithm to Calculate Range, Range(P,fHz), 100\% Battery Discharge, Driving Profile Velocity/Time File, P and Sampling Rate, fHz

Energy $_{\text {bat }}=22.7 \cdot \mathrm{~kW} \cdot \mathrm{hr}$

Read US06 and FTP Dynamometer Drive Profile Files

Refer to: http://www.epa.gov/nvfel/testing/dynamometer.htm
The US06 cycle represents an 8.01 mile (12.8 km) route with an average speed of $48.4 \mathrm{miles} / \mathrm{h}(77.9 \mathrm{~km} / \mathrm{h})$, maximum speed $80.3 \mathrm{miles} / \mathrm{h}(129.2 \mathrm{~km} / \mathrm{h})$, and a duration of 596 seconds. Sampling can be either 1 Hz or 10 Hz
The Federal Test Procedure (FTP) is composed of the UDDS followed by the first 505 seconds of the UDDS. It is often called the EPA75. 10 Hz Sampling data is named FP10 and HY10 for the Highway schedule.

$$
\begin{aligned}
& \text { FTPF }:=\operatorname{READPRN}(\text { "FedTestProc.txt" }) \quad \underset{\sim}{\mathrm{w}}:=\operatorname{FTPF}^{\langle 0\rangle} \quad \operatorname{FTP}:=\operatorname{FTPF}^{\langle 1\rangle} \quad \operatorname{rows}(\mathrm{FTP})=1875 \\
& \text { UDDSF := READPRN("uddscol.txt") } \\
& \text { HWYF := READPRN("hwycol.txt") } \\
& \text { FP10 := READPRN("FTP10Hz.TXT") } \\
& \text { HY10 := READPRN("HWY10Hz.TXT") } \\
& \text { FTP10V := submatrix(FP10,0, rows(FP10) }-1,1, \operatorname{cols}(\mathrm{FP} 10)-1) \\
& \text { HWY10V := submatrix(HY10, } 0, \text { rows(HY10) }-1,1, \operatorname{cols}(\mathrm{HY} 10)-1) \\
& \text { US06F := READPRN("US06PROFILE.TXT") } \\
& \text { Time }:=\operatorname{USO6F}{ }^{\langle 0\rangle} \quad \operatorname{US} 06:=\text { USS06F }^{\left\langle{ }^{~}{ }^{1}\right\rangle} \quad \mathrm{n}_{6}:=0 . .598 \\
& \text { r1 := } 0 . . \operatorname{rows}(\mathrm{HY} 10) \cdot 10-1 \\
& \text { HWY }^{10}{ }_{r 1}:=\text { HWY10V } \operatorname{ceil}\left(\frac{\mathrm{r} 1+1}{10}\right)-1, \bmod (\mathrm{r} 1,10)
\end{aligned}
$$

Using EPA Profiles and above Range Program, Calculate EV Range for EPA Profiles

$$
\text { Range }_{\mathrm{US} 06}:=\operatorname{Range}(\mathrm{US} 06,1) \quad \operatorname{Range}_{\mathrm{FTP}}:=\operatorname{Range}(\mathrm{FTP}, 1) \quad \operatorname{Range}_{\mathrm{HWY}}:=\operatorname{Range}(\mathrm{HWY}, 1)
$$

EPA 2008 Cycle MPG Fuel Economy Least Squares Fit Regression for Range

$$
\begin{gathered}
\mathrm{MPG}_{\text {city }}:=\frac{1}{\left(0.003259+\frac{1.18053}{\text { Range }_{\mathrm{FTP}}}\right)} \quad \mathrm{MPG}_{\mathrm{hwy}}:=\frac{1}{0.001376+\frac{1.3466}{\text { Range }_{\mathrm{HWY}}}} \\
\mathrm{MPG}_{\text {epa }}:=0.55 \cdot \mathrm{MPG}_{\text {city }}+0.45 \cdot \mathrm{MPG}_{\mathrm{hwy}}
\end{gathered}
$$

Single Charge EPA Range Calculations: Federal Test Procedure (FTP), Highway, and US06

$$
\begin{aligned}
& \text { Model Validation: Published EPA Range is } \mathbf{2 6 0} \text { miles } \\
& \text { MPG }_{\text {city }}=63.37 \\
& \text { Range }_{\mathrm{HWY}}=83.77 \\
& \mathrm{MPG}_{\mathrm{hwy}}=57.31 \\
& \text { Range }_{\text {US06 }}=59.77 \\
& \mathrm{MPG}_{\text {epa }}=60.64 \\
& \begin{array}{l}
\mathrm{r}:=0 . . \operatorname{rows}(\mathrm{FTP})-1 \quad \text { Distance }_{\mathrm{r}}:=\sum_{\mathrm{r}=0}^{\mathrm{r}} \mathrm{FTP}_{\mathrm{r}} \cdot \frac{1}{60 \cdot 60} \quad \mathrm{rr}:=0 . . \operatorname{rows}(\mathrm{US} 06)-1 \quad \text { Distance }_{\mathrm{rr}}:=\sum_{\mathrm{rr}=0}^{\mathrm{rr}} \mathrm{USO}_{\mathrm{rr}} \cdot \frac{1}{60 \cdot 60} \\
\max (\text { Distance })=11.04
\end{array} \\
& \max (\text { Distance })=11.04
\end{aligned}
$$

Plots of EPA Dynamometer Vehicle Testing Profiles

FTP Drive Cycle: Speed mph and Distance miles vs time (seconds)

IX. Tire Friction (Composition and Width)

Coefficient of Static Friction (μ) is the ratio of Tire Road Force to Vehicle Weight. Values of μ for Conventional Car tire On: Asphalt 0.72, Car tire Grass 0.35 .
Top Fuel drag car tires are getting a coefficient of friction well over 4.5. How is this possible?
This material came from: http://insideracingtechnology.com/tirebkexerpt1.htm See Mathcad/EVs/Tire Friction.doc Rubber generates friction in three major ways: adhesion, deformation, and wear.
Rubber in contact with a smooth surface (glass is often used in testing) generates friction forces mainly by adhesion. When rubber is in contact with a rough surface, another mechanism, deformation, comes into play. Movement of a rubber slider on a rough surface results in the deformation of the rubber by high points on the surface called irregularities or asperities. A load on the rubbel slider causes the asperities to penetrate the rubber and the rubber drapes over the asperities. The energy needed to move the asperities in the rubber comes from the differential pressure across the asperities as shown in Fig. 3.4, where a rubber slider moves on an irregular surface at speed V .

Vertical Load

Tearing and Wear
As deformation forces and sliding speeds go up, local stress can exceed the tensile strength of the rubber, especially at an increase in local stress near the point of a sharp irregularity. High local stress can deform the internal structure of the rubber past the point of elastic recovery. When polymer bonds and crosslinks are stressed to failure the material can't recover completely, and this can cause tearing. Tearing absorbs energy, resulting in additional friction forces in the contact surface.

Wear is the ultimate result of tearing.

$$
\text { Ftotal }=\text { Fadhesive }+ \text { Fdefformation }+ \text { Fwear }
$$

Deformation Friction and Viscoelasticity
Rubber is elastic and conforms to surface irregularities. But rubber is also viscoelastic; it doesn't rebound fully after deformation.

Hysteresis

Hysteresis, or energy loss, in rubber.
where there is some sliding between the rubber and an irregular surface. If the rubber recovers slowly from the passing irregularity as in the high-hysteresis rubber, it can't push on the downstream surfaces of the irregularities as hard as it pushes on the upstream surfaces. This pressure difference between the upstream and downstream faces of the irregularity results in friction forces even when the surfaces are lubricated.

Wide Tires: It is true that wider tires commonly have better traction. The main reason why this is so does not relate to contact patch, however, but to composition. Soft compound tires are required to be wider in order for the side-wall to support the weight of the car softer tires have a larger coefficient of friction, therefore better traction. A narrow, soft tire would not be strong enough, nor would it last very long. Wear in a tire is related to contact patch. Harder compound tires wear muchlonger, and can be narrower. They do, however have a lower coefficient of friction, therefore less traction. Among tires of the same type and composition, here is no appreciable difference in 'traction' with different widths. Wider tires, assuming all other factors are equal, commonly have stiffer side-walls and experience less roll. This gives better cor nering perfor mance.

Friction is proportional to the normal force of the asphalt acting upon the car tires. This force is simply equal to the weight which is distributed to each tire when the car is on level ground. Force can be stated as Pressure X Area. For a wide tire, the area is large but the force per unit area is small and vice versa. The force of friction is therefore the same whether the tire is wide or not. However, asphalt is not a uniform surface. Even with steamrollers to flatten the asphalt, the surface is still somewhat irregular, e specially over the with of a tire. Drag racers can therefore increase the probability or likeliho od of making contact with the road by using a wider tir In addition a secondary benefit is that the wider tire increased the support base a

Friction force is independent of the apparent are of contact. For hard materials, this is nearly correct. The true area of contact varies with the applied load. The apparent area does not. If you can imagine the contact zone from a microscopic viewpoint, only a tiny portion of the apparent area actually touches. This tiny area is the true area of contact. But this applies to hard materials. It does not apply to elastomers, such as rubber. Tire tread rubber compounds vary greatly from one application to another. Race car tire tread compounds can be very soft, viscoelastic materials, while heavy truck tread rubber can be quite hard. In general, soft rubber materials have greater friction. With drag racing 'slicks,' the tire tread material literally sticks to the pavement--and the rubber is sheared from the tire. Clearly, the greater the apparent contact area, the greater this shear force. Cleanliness is important to getting the surfaces to 'stick.' This is one reason why drag racers have a 'burn-out' before each race (another is to raise the tire tread surface temperature). However, there is an other rea son for wide tire tre ads on some road and track racing cars. They need tread volume to provide enough wear life. Tires wear rapidly under racing conditions. Some long races wear out several sets of tires. There are trade-offs with traction and tread life. That is why heavy truck tire tread compounds do not have as much friction as those used on passenger cars. However, truck tire tre ad compounds provide longer wear life and less heat build-up. Like manythings in this world, tire tread choices involve compromises.

