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OUTLINE

Analysis and Optimization of a Capacitive Pressusnsducer
l. General Construction Details
Il. Deflection under Pressure
Il Derivation of Capacitance versus Deflection
V. Ideal Sensor Response
V. Error Analysis - Nonlinearity
VI.  Design by Optimization

SHORT SUMMARY

1. Three dimensionless ratios, Zo/Smax, re /re]l @s /Co , completely specify the electrical
parameters of the sensor, i.e., normalized capeat&/Co , linearity, sensitivity, and curvature
of the output voltage response. The definitionsepfd, and Smax are illustrated in Figure 1.
Zo is the deflection of the diaphragm, Cs is thpuircapacitance of the electronics and Co is the
cell parallel plate capacitance realized when tipaiti pressure is zero.

2. Increasing the radii ratio re/rd, of the pres#sdign to 0.5, and suitably readjusting other
ratios, will concurrently increase the capacitaad reduce the cell size while maintaining
linearity and sensitivity constant.

3. Temperature drift of the cell is more than askeorof magnitude less than the associated
electronics.



INTRODUCTION

The more stringent automotive emissions standaads teveloped a need for sophisticated
control systems, some of which require a maniftlsicdute pressure transducer. One such
transducer, manufactured by Kavlidatp://www.kavlico.com)) uses a pressure sensitive
capacitor. The capacitor determines the frequeioy,a variable oscillator. The output of the
variable oscillator and that of a reference ostulaf frequency, fo is translated into an averaged
DC voltage of magnitude Vo (1 - f/fo) with the usfea digital gate.* Identical twin oscillators

are used ensuring a constant frequency ratio engpeérature and minimal voltage drift. This

DC output is level shifted and amplified by an oppa

The purpose of this paper is twofold: (1) To depethe design equations for the capacitive
pressure transducer and (2) to use these equatidingl the optimum (i.e., lowest cost) design.




l. GENERAL CONSTRUCTION DETAILS
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FIGURE 1
CROSS SECTION OF CAPACITOR

The capacitive pressure transducer (PTD) is coctgtiufrom two circular plates of polished
alumina ("A" and "B") separated by a ring of glassheir periphery. The space between the
plates is evacuated and then sealed off througirtaop the underside of "B". Gold electrodes
on the inner faces of the plates form a capaciidre gold electrodes and the lead wires are
connected by thick-film runners. A pressure defere, 0P, across the thin top plate "A" causes
it to deflect downwards resulting in an increaseayacitance.

The maximum spacing between the electrodes, Snmax®when the pressure difference across
the top plate goes to zero. Use of the paralbkptapacitor formula and extrapolating
capacitance versus pressure datPe 0 gives a value of Smax of 1 mil for a Kavipr@ssure
transducer. Edge effects shall not be considerduisrparticular analysis as it contributes at
most 0.5% to the total value of the capacitan€oo design suggests use of annular peripheral
field electrodes to reduce this component.



. DEFLECTION UNDER PRESSURE

Downward deflection of the thin upper plate is oggab by a torque resulting from the bond
between the peripheral glass and the bottom sitleeahin plate. For a rigid material such as
glass and because of the relatively small deflaatioder consideration, it is reasonable to
assume that dZ/dr = 0 at the circumference of abi@tween the glass and ceramic. The
primary region of interest for our analysis is tdemtral region of the plates where the greatest
contribution to capacitance under bending is maldee nature of the solution of partial
differential equations is such that boundary caoodg have minimal effects of regions far
removed from the boundary. Thus, any minor demegtifrom our assumed boundary conditions
should be of very slight, if any, consequence. giteatest effect of any such deviation would be
to lessen the opposing torque at the edges regintia greater deflection. Normalizing the
calculated deflection to the actual deflection vaothius completely remove any such difficulty.
The considerable change in internal volume thatocar within a capacitive PTD would result
in an accompanying change in internal pressura f®aled gas filled cavity. This, obviously, is
not a consideration for the evacuated PTD.

The solution to the problem of pure bending ofrawudar plate with clamped edges under
uniform applied pressure is given in a number edtises on elasticity? > * > ® The deflection
is Z=z0 (1 — (r/rd))* where zo is the deflection atr = 0

afa- vz)md"’[?
Zgm—————

16T
wherev is Poisson's ratio and Y is Young's modulus. Negefollowing:
1. The deflection is directly proportional .

2. An inflection point occurs at r/rd = 0.577.

3. Toward the center of the plate (where the gseatentributions to capacitance are made)
the linear and square terms in r/rd are dominaat oubic and quadric terms.

4. The deflection changes greatly with small changebé diameter r, or thickness of the

top plate. For small changéz/z = 4ord/rd - 3dt/t and, thus, considerable tolerance
buildup is virtually unavoidable. Plate thicknesgess controllable than diameter so it is
a design variable of greater concern. A 20% deser@athickness nearly doubles the
deflection.

The design of the PTD sensor is such that the aditimaximum deflection to the thickness of the
plate is about 0.02. For such small deflectionis, ieasonable to assume that, relative to other
errors, the deflection is perfectly linear withpest to pressure The excellent linearity of
piezoresistive PTD's having similar deflecting dieggms tends to support this.

Using the parameters for the Kavlico PTD of Y =4T0° psi, V = 0.22, t = 25 mil, and r, =
0.66", and assumindP = 14.7 psi gives a maximum deflection of Zo =/(ndl. Various
measurements suggest that Zo @ 1 atmosphere favliec®& PTD is 0.5 mil or less. More
precise and controlled measurements of the vapatemeters are needed to discern the origin
of the discrepancy in Z values.



I11. DERIVATION OF CAPACITANCE VERSUSDEFLECTION
Consider a cross section of an annular elemerfeoPT D.

,

Gausses law demands that the local electric fielddspendicular to the surface of a conductor.
Thus, the electric field at the upper electrodebwth vertical, 1 and radial 1 components.

The maximum value of the, tomponent occurs at the point of greatest slopgehwh at the
inflection point. The tangent of the angle to biwgizontal there is dZ/dr @r = 0.577 rd, which
equals 2.28 Zo/rd. Assuming a maximum value & il for Z gives a maximum angle of

< 0.01° for a Kavlico PTD. Thus, we can ignore ttaéial component and still maintain an
inaccuracy on the order of 0.1%. We shall assurakthie electric field has only a vertical
component. Gausses law gives the surface charggtylat the electrodes of=¢,V/S where V

is the applied voltage and S is the separationdmtvhe plates. Then

CpTD = 8 = 218,y dr

Let

then
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The derivative of the PTD capacitance of Equation (6) with respect to

deflection Zo is given below.
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This result will be needed in succeeding sections. The value of the
derivative for the Kavlico design, C 44 pFd, r /r, = 0.38 and Z /S = 0.5,
o e °d o' max
is 120 pFd/mil. The value at ZO/S = 0.05 is 41.66 pFd/mil.

max
Below is a plot of Equation (6) which displays normalized capacitance

versus normalized displacement for curves of constant re/rd. The parameters
Zo/sma and re/rd completely specify the normalized capacitance. The nature

of the ideal curve is discussed in the next section.



CALCULATE NORMALIZED CAPACITANCE

Rearranging the terms for€, in equation (5) and dividing by Co, gives theoaif Grp to Co,
designated as Cptd2Co. Designate the variablesas/re2rd and Zo/Smax as Zo2Smax.

tanf(re2rd Zo2Smax=atanHy/ Zo2Sm atanl'[\/ ZoZSmﬁQ(l— re2r(¥)]

Cptd2Cd re2rd Zo2Smjpse re2rd 2 fanf(re2rd Zo2Smax

Zo2Smax
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V. ERROR ANALYSIS - NONLINEARITY

The nature of the deviation of the capacitance of an actual sensor from
the ideal can be discerned by judiciously expanding the capacitance equation

(6) into the following infinite series:

The first term on the right hand side in the above expansion is the idealized
response. The remaining terms reduce the value of capacitance from the ideal
and introduce nonlinearities. Figure 3 and the expansion reveal that re/rd
must be made small if the nonlinearities in frequency are to be minimized.
This series expansion provides insight into the nature of the deviation from
ideal behavior; but because of its complexity, it is not well suited for cal-
culating frequency or voltage nonlinearity.

The deviation of the capacitance of an actual sensor from the ideal can
=C j§ o 0

PTD 0i°i |Smax
Substituting this into Equation (8), suitably manipulating the resultant

l

be specified exactly in terms of some infinite series CI -C

equation, and separating linear from nonlinear terms gives

Z
: o
Normalized v ( max) " ZO/SmaX
Nonlinear = - (11)
VReference Lk Cs/Co
Voltage Component
where, for convenience, we have defined a = 1 - qi. The last term on the right

of Equation (12) is the linear portion of the voltage response of the PTD. The
first term on the right hand side can be calculated from Equation (8). Differ-

entiating both sides of the above series equation and evaluating this result at
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tive given in Equation (7) is not very useful in this situation as it is indeter-
minate at the origin. We define a function, a, of (re/rd) given by
CPTD [Zo
-1
a= CO S

limitof ~Z /s 12)
ZJ/Srax>0 © TE

The function a is readily calculated from the above to a high degree of accuracy
by using a non-zero point infinitesimally close to the origin (ZO/Smax = 0.001
gives satisfactory accuracy). Values of "a'" which are useful in calculating
linearity are tabulated below:

re/rd: 0.1 0.2 0.3 0.38 0.4 0.5 0.6

a ¢ 0.9897 0.9614 0.9137 0.8641 0.8493 0.7715 0.6837
Curve fitting a function to the tabulated values of a gives the following ex-

2
pression which is accurate to within a few percent: a =1 - [l - 0.35 (re/rd)ﬂ(re/rd)

Nonlinearity of a curve is defined as the percent error band of nonlinear
terms about the linear portion of the curve within some specified operating
range. Nonlinearity can be calculated as one-half of the nonlinear component
divided by the linear component of a curve. Using the results of Equations
(11) and (8) gives

+ 7% nonlinearity (C,.m/C -1) (1 + CS/CO)

= 100 ( PTD’ "o _
28 (CPTD/Co £ CS/CO) Zo/smax

N[

of output voltage (13)

for nonlinearity over the operating range AP = O to AP (Zolsmax).

Frequency is a decreasing function of capacitance, and thus output voltage
is an increasing function of capacitance. Therefore, adding a stray capaci-
tance, CS’ to the initial capacitance, Co’ causes a positive displacement of
voltage, Cs/(C0+CS). This offset in voltage at the origin can be nulled out
by equally offsetting the origin and recognizing that the initial capacitance
is CO + Cs' This is the approach adopted for Equations (8) and (13).

The stray capacitance offset, of course, has not disappeared but has been

shifted to outer lying values of the coordinate Zo/smax' Has nonlinearity



disappeared at the origin? This question is areviy taking first and second derivatives of
Equation (8), obtaining the expression for the atue of the output transfer function,
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For the ideal V = Zo/Smax straight line respoinsihe absence of stray capacitance, Cs , the
curvature vanishes, i.e., the above expression®gee. Introducing stray capacitance causes
the greatest reduction in the last term of the al@pression giving a positive curvature, i.e., the
voltage response bows upward. The greatest relatfluence of Cs occurs whepg is

smallest, i.e., at the origin whed® = 0. For an actual non-ideal sensor, Figure/8ais that
relative to the ideal, thepgd Co slope is decreased and its curvature increaseding the above
equation and the voltage curvature to increasdipelsi or bow upward. Thus, unfortunately,
non-deal and stray capacitance induced curvatueesdalitive. However, because the actual
PTD capacitance is less than the ideal for somearordisplacement, the non-ideal voltage
response is shifted downward relative to the idaatking the sign of the stray capacitance-
voltage offset.

The original question concerning nonlinearity & dnigin is semantically incorrect. Linearity is
not defined at a point but over a specified rangecondly, nonlinearity is not influenced by
offset, it is only a function of interval size aadrvature. A finite offset can always be nulled ou
while curvature is unaffected by a linear amplifidihus, the bucking of stray and non-ideal
offsets does not improve linearity. Non-lineargynot the same as curvature. For large stray
capacitance, curvature at the origin is large.tdkyng a sufficiently small interval, nonlinearity
can be made arbitrarily small.

VI. DESIGN BY OPTIMIZATION

When regarding the PTD system as a black box, theabservable sensor parameter is
nonlinearity. In what follows, it will be seen thjaggling the design variables to comply with
some specification on non-linearity over a pressange while simultaneously trying to make
the sensor as small as possible is the major fagfitimizing the design.

All of the electrical parameters of the PTD ser8ei/Co, V/Vrer, £V/V, and nonlinearity are
functions of dimensionless ratios viz. re/rd, Zo&&mand Cs /Co. Mathematically, the factors of
the ratios are free to assume any values; thevadd, however, imposes some restraints.
Because of the influence of Cs /Co on nonlineantyimum stray capacitance Cs is a crucial
parameter. The nominal spacing between electr8des< is also of importance. Technological
limitations are such that Smax ~ 1 mil is probahly minimum practical value for the max
spacing. The electronics also imposes some camtstraErom a signal processing point of view,
it is desirable to have sensitivity as large asjimbs. Small values of Go/Co  @maximundP
would certainly compromise the signal to noiseorafithe system. Thus, some specified
Cpro/Co at maximum pressure is a third constraint.



Summarizing the design situation: There are erghtbles, Zo, Smax, re, rd, t, Cs, Co and
Cerp. There are four equationspfg, Co, Zo, and NonLinearity. There are three cemsts:

Cs, Smax, and Sensitivity. Eight variables anetseonditions leave one degree of freedom.
First we will implement the existing constraintBhen we shall use the last degree of freedom to
optimize the system by specifying a price/perforogafigure of merit, EFM.

Economics dictates that the best design is thedbeast design that meets all specifications.
Thus,minimizing the radius of the plate, rd, which will give thdowest material cogt, is the
condition for optimum design. This requirement oaes the last degree of freedom and
uniquely specifies the design. The plate radiugvisn by

-1
SmanCs [ [Cs
Iplate= T[aﬁo EEEESJ

Where Smax and Cs are given constants (which afédgiscale the size of the transducer) and
Cs /Co and re/rd are dimensionless ratios. Theajamptimization is to find the design
variables Zo/Smax, re/rd, and Cs/Co that meet itrengspecifications and yield the maximum

value of
\/EBrE
Co rd

which is an economic figure of merit (EFM) for tegstem. The optimum design parameters
yield the greatest EFM.

For example, given the design requirementsplCo = 1.35 at maximum pressud® and + -
nonlinearity = 1.5%, the following trial solutiomgere obtained by the above procedure:

MATHCAD OPTIMIZATION SOLUTION:

Solve Equation (5) For Zo/Smax Given Re/Rd And Riegjuired Sensitivity

Estimate zo = 0.5
Z(re2rd :=root(Cptd2Cé¢ re2rd 20- Sen z0

Set Design Constraints On Sensitivity And Linearity

Cptd2Cd re2rd Zo2Smpxl — 2 & re2rilAlZo2Smax - 1

Cs2Cq re2rd Zo2Smpx=
1+ 2 re2riiA[Zo2Smax- Cptd2Cd re2rd Zo2Smpx

Maximize sensitivity and mimimize cost by maximigifigure of merit, EFM:

EFM(re2rd Zo2Smax=re2rdy Cs2Cp re2rd Zo2Smax



Plot Figure of Merit, EFM:

Figure of Merit
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Dir(re2rd :=
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ROpt:=0.! Giver |Dir(ROpY)| = C

Minerr(ROp) = 0.468
For specified conditions, select re/rd468 for optimum.
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