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SHORT SUMMARY 
1. Three dimensionless ratios, Zo/Smax,  re /re,  and Cs /Co , completely specify the electrical 
parameters of the sensor, i.e., normalized capacitance C/Co , linearity, sensitivity, and curvature 
of the output voltage response. The definitions of re, rd, and Smax   are illustrated in Figure 1.  
Zo is the deflection of the diaphragm, Cs is the input capacitance of the electronics and Co is the 
cell parallel plate capacitance realized when the input pressure is zero. 
 
2. Increasing the radii ratio re/rd, of the present design to 0.5, and suitably readjusting other 
ratios, will concurrently increase the capacitance and reduce the cell size while maintaining 
linearity and sensitivity constant. 
 
3. Temperature drift of the cell is more than an order of magnitude less than the associated 
electronics. 



 
  

INTRODUCTION 
 

The more stringent automotive emissions standards have developed a need for sophisticated 
control systems, some of which require a manifold absolute pressure transducer.  One such 
transducer, manufactured by Kavlico (http://www.kavlico.com/ ) uses a pressure sensitive 
capacitor. The capacitor determines the frequency, f, of a variable oscillator.  The output of the 
variable oscillator and that of a reference oscillator of frequency, fo is translated into an averaged 
DC voltage of magnitude Vo (1 - f/fo) with the use of a digital gate.* Identical twin oscillators 
are used ensuring a constant frequency ratio over temperature and minimal voltage drift.  This 
DC output is level shifted and amplified by an op amp. 
The purpose of this paper is twofold:  (1) To develop the design equations for the capacitive 
pressure transducer and (2) to use these equations to find the optimum (i.e., lowest cost) design. 



 
I. GENERAL CONSTRUCTION DETAILS  

 
 
 
 

 
 

The capacitive pressure transducer (PTD) is constructed from two circular plates of polished 
alumina ("A" and "B") separated by a ring of glass at their periphery.  The space between the 
plates is evacuated and then sealed off through a port on the underside of "B".  Gold electrodes 
on the inner faces of the plates form a capacitor.  The gold electrodes and the lead wires are 
connected by thick-film runners.  A pressure difference, δP, across the thin top plate "A" causes 
it to deflect downwards resulting in an increase of capacitance. 
 
The maximum spacing between the electrodes, Smax occurs when the pressure difference across 
the top plate goes to zero.  Use of the parallel plate capacitor formula and extrapolating 
capacitance versus pressure data to δP = 0 gives a value of Smax of 1 mil for a Kavlico pressure 
transducer. Edge effects shall not be considered in this particular analysis as it contributes at 
most 0.5% to the total value of the capacitance.  (Good design suggests use of annular peripheral 
field electrodes to reduce this component. 
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FIGURE 1 
CROSS SECTION OF CAPACITOR 

 



II. DEFLECTION UNDER PRESSURE 
 

Downward deflection of the thin upper plate is opposed by a torque resulting from the bond 
between the peripheral glass and the bottom side of the thin plate.  For a rigid material such as 
glass and because of the relatively small deflection under consideration, it is reasonable to 
assume that dZ/dr = 0 at the circumference of contact between the glass and ceramic. The 
primary region of interest for our analysis is the central region of the plates where the greatest 
contribution to capacitance under bending is made.  The nature of the solution of partial 
differential equations is such that boundary conditions have minimal effects of regions far 
removed from the boundary.  Thus, any minor deviations from our assumed boundary conditions 
should be of very slight, if any, consequence.  The greatest effect of any such deviation would be 
to lessen the opposing torque at the edges resulting in a greater deflection.  Normalizing the 
calculated deflection to the actual deflection would thus completely remove any such difficulty. 
The considerable change in internal volume that can occur within a capacitive PTD would result 
in an accompanying change in internal pressure for a sealed gas filled cavity.  This, obviously, is 
not a consideration for the evacuated PTD. 
 
The solution to the problem of pure bending of a circular plate with clamped edges under 
uniform applied pressure is given in a number of treatises on elasticity.1, 2, 3, 4, 5, 6. The deflection 
is Z = zo (1 – (r/rd)2  )2  where zo is the deflection at r = 0 

 
 
 
 

where ν is Poisson's ratio and Y is Young's modulus.  Note the following: 
1. The deflection is directly proportional to δP. 
2. An inflection point occurs at r/rd = 0.577. 
3. Toward the center of the plate (where the greatest contributions to capacitance are made) 

the linear and square terms in r/rd are dominant over cubic and quadric terms.   
4. The deflection changes greatly with small changes in the diameter r, or thickness of the 

top plate.  For small changes  δz/z = 4 δrd/rd  - 3 δt/t and, thus, considerable tolerance 
buildup is virtually unavoidable.  Plate thickness is less controllable than diameter so it is 
a design variable of greater concern.  A 20% decrease in thickness nearly doubles the 
deflection. 

 
The design of the PTD sensor is such that the ratio of maximum deflection to the thickness of the 
plate is about 0.02.  For such small deflections, it is reasonable to assume that, relative to other 
errors, the deflection is perfectly linear with respect to pressure   The excellent linearity of 
piezoresistive PTD's having similar deflecting diaphragms tends to support this. 
 
Using the parameters for the Kavlico PTD of Y = 47 x 106 psi, V = 0.22, t = 25 mil, and r, = 
0.66", and assuming δP = 14.7 psi gives a maximum deflection of Zo = 0.67 mil.  Various 
measurements suggest that Zo @ 1 atmosphere for a Kavlico PTD is 0.5 mil or less.  More 
precise and controlled measurements of the various parameters are needed to discern the origin 
of the discrepancy in Z values. 
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III.  DERIVATION OF CAPACITANCE VERSUS DEFLECTION 
Consider a cross section of an annular element of the PTD. 

 
FIGURE 2 

  
Gausses law demands that the local electric field be perpendicular to the surface of a conductor.  
Thus, the electric field at the upper electrode has both vertical, 1z  and radial 1r  components.  
The maximum value of the 1z component occurs at the point of greatest slope which is at the 
inflection point.  The tangent of the angle to the horizontal there is dZ/dr @r = 0.577 rd, which 
equals 2.28 Zo/rd.  Assuming a maximum value of  0.5 mil for Z gives a maximum angle of  
< 0.01° for a Kavlico PTD.  Thus, we can ignore the radial component and still maintain an 
inaccuracy on the order of 0.1%. We shall assume that the electric field has only a vertical 
component.  Gausses law gives the surface charge density at the electrodes of σ = εoV/S where V 
is the applied voltage and S is the separation between the plates.  Then 
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CALCULATE NORMALIZED CAPACITANCE 
 
Rearranging the terms for CPTD in equation (5) and dividing by Co, gives the ratio of CPTD to Co, 
designated as Cptd2Co.  Designate the variables re/rd as re2rd and Zo/Smax as Zo2Smax.  
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disappeared at the origin?  This question is answered by taking first and second derivatives of 
Equation (8), obtaining the expression for the curvature of the output transfer function, 
 

 
 
For the ideal V = Zo/Smax   straight line response in the absence of stray capacitance, Cs , the 
curvature vanishes, i.e., the above expression equals zero.  Introducing stray capacitance causes 
the greatest reduction in the last term of the above expression giving a positive curvature, i.e., the 
voltage response bows upward.  The greatest relative influence of Cs occurs when CPTD is 
smallest, i.e., at the origin where δP = 0.  For an actual non-ideal sensor, Figure 3 reveals that 
relative to the ideal, the CPTP/Co slope is decreased and its curvature increased, causing the above 
equation and the voltage curvature to increase positively or bow upward.  Thus, unfortunately, 
non-deal and stray capacitance induced curvatures are additive. However, because the actual 
PTD capacitance is less than the ideal for some nonzero displacement, the non-ideal voltage 
response is shifted downward relative to the ideal, bucking the sign of the stray capacitance-
voltage offset. 
 
The original question concerning nonlinearity at the origin is semantically incorrect.  Linearity is 
not defined at a point but over a specified range.  Secondly, nonlinearity is not influenced by 
offset, it is only a function of interval size and curvature.  A finite offset can always be nulled out 
while curvature is unaffected by a linear amplifier.  Thus, the bucking of stray and non-ideal 
offsets does not improve linearity.  Non-linearity is not the same as curvature.  For large stray 
capacitance, curvature at the origin is large.  By taking a sufficiently small interval, nonlinearity 
can be made arbitrarily small. 
 
 
 
 
VI.   DESIGN BY OPTIMIZATION 
When regarding the PTD system as a black box, the only observable sensor parameter is 
nonlinearity.  In what follows, it will be seen that juggling the design variables to comply with 
some specification on non-linearity over a pressure range while simultaneously trying to make 
the sensor as small as possible is the major task of optimizing the design. 
 
All of the electrical parameters of the PTD sensor CPTD/Co, V/VRef, d

2V/V, and nonlinearity are 
functions of dimensionless ratios viz. re/rd, Zo/Smax  and Cs /Co.  Mathematically, the factors of 
the ratios are free to assume any values; the real world, however, imposes some restraints. 
Because of the influence of Cs /Co on nonlinearity, minimum stray capacitance Cs is a crucial 
parameter.  The nominal spacing between electrodes Smax  is also of importance.  Technological 
limitations are such that Smax  ~ 1 mil is probably the minimum practical value for the max 
spacing.  The electronics also imposes some constraints.  From a signal processing point of view, 
it is desirable to have sensitivity as large as possible.  Small values of CPTD/Co   @maximum δP 
would certainly compromise the signal to noise ratio of the system.  Thus, some specified  
CPTD/Co at maximum pressure is a third constraint. 
 



Summarizing the design situation:  There are eight variables, Zo, Smax, re, rd, t, Cs, Co and 
CPTD.   There are four equations: CPTD, Co, Zo, and NonLinearity.  There are three constraints: 
Cs, Smax, and Sensitivity.   Eight variables and seven conditions leave one degree of freedom.  
First we will implement the existing constraints.  Then we shall use the last degree of freedom to 
optimize the system by specifying a price/performance figure of merit, EFM.    
 
Economics dictates that the best design is the lowest cost design that meets all specifications.  
Thus, minimizing the radius of the plate, rd, which will give the lowest material cost, is the 
condition for optimum design.  This requirement removes the last degree of freedom and 
uniquely specifies the design.  The plate radius is given by 
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Where Smax and Cs are given constants (which effectively scale the size of the transducer) and 
Cs /Co and re/rd are dimensionless ratios.  The goal of optimization is to find the design 
variables Zo/Smax, re/rd, and Cs/Co that meet the given specifications and yield the maximum 
value of  

Cs

Co

re

rd
⋅

 
which is an economic figure of merit (EFM) for the system. The optimum design parameters 
yield the greatest EFM. 
 
For example, given the design requirements, CPTD/Co  = 1.35 at maximum pressure, δP and + - 
nonlinearity = 1.5%, the following trial solutions were obtained by the above procedure: 
 
 
MATHCAD OPTIMIZATION SOLUTION: 
 
 
Solve Equation (5) For Zo/Smax Given Re/Rd And The Required Sensitivity 
 
Estimate zo = 0.5 

 
 

Set Design Constraints On Sensitivity And Linearity: 
 

 
 
 

Maximize sensitivity and mimimize cost by maximizing figure of merit, EFM: 
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Plot Figure of Merit, EFM: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

For specified conditions, select re/rd = 0.468 for optimum. 
 
 
 
 
 
 
 

REFERENCES 
 

1. G. Nadeau, "Introduction to Elasticity", 1964, p. 186. 
2. E. Mansfield, "The Bending and Stretching of Plates", 1964, p. 38. 
3. "Treatise on the Mathematical Theory of Elasticity", 1944, p. 475. 
4. Landau - Lifshitz, "Theory of Elasticity", 1959, p. 50. 
5. Temashenko, "Theory of Plates and Shells", 1959, p. 55. 
6. Samaun, "An Integrated Circuit Piezoresistive Pressure Sensor for Biomedical 
Instrumentation", 1971 Standford Univ., Ph.D. Thesis, p.45. 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Figure of Merit

Relative Electrode Size

E
F

M EFM re2rd z re2rd( ),( )

re2rd

 

Dir re2rd( )
re2rd

EFM re2rd z re2rd( ),( )d

d
:=  

ROpt 0.5:=  Given Dir ROpt( ) 0 

Minerr ROpt( ) 0.468=  


