STABILITY CRITERIA FOR FET SWITCHING WMRIIjics. .un

http://www.leapcad.com/Other_Tech/FET_Stability_Analysis.mcd
The behavior of ideal electrical circuit elements and the great majority of engineering applications can be described as Linear Systems. One important aspect of linear system behavior is stability. A system will be unstable if it has any roots in the right half plane. The Routh-Hurwitz criteria for the stability of linear systems states that the necessary condition for asymptotic stability is that both the coefficients of the characteristic polynomial and the Hurwitz determinants be positive.

This criterion can be applied to a MOSFET driving a resistive load, which because of its 100 MHz bandwidth and high input impedance is susceptible to instability. Oscillations can occur when the gate capacitance and circuit board trace inductance form a tens of MHz tank circuit which is not sufficiently damped. What is the criterion for damping? The answer involves 10 variables with very complex relationships. Our goal is to gain insight into these involved relationships. We will develop a tool for this purpose which we will call stability sensitivity.

An analysis of the small signal AC model for a FET is shown below. Since the power supply is ideally a short for AC, the circuit below applies to both high and low side drivers. We shall consider the high side driver case. Rg and Lg are the circuit gate resistance and inductance, respectively.

For the case where a large RFI cap (which behaves as an inductance at high frequencies, i.e. a component of Lg below) shunts the gate to load ground, then Rcs and Lcs are the sum of the source and load resistance and inductance and Rdl and Ldl are simply the FET drain resistance and inductance. For the case where the low end of the RFI cap goes to the source however, then Rcs = 0 and Rdl and Ldl are the sum of the drain plus load resistance and inductance.

The Loop and Node Equations for the above model are:

$$
\text { Vgs }=\mathrm{Vgd}+\mathrm{Vds} \quad \mathrm{Ig}+\mathrm{Id}+\mathrm{Ics}=0
$$

Vds $:=1$	Vds $:=\mathrm{Vds}$	$\mathrm{Cds}:=1$	$\mathrm{Cds}:=\mathrm{Cds}$
Vgs $:=1$	Vgs $:=\mathrm{Vgs}$	$\mathrm{Cgs}:=1$	$\mathrm{Cgs}:=\mathrm{Cgs}$
Vgd $:=1$	Vgd $:=\mathrm{Vgd}$	$\mathrm{Lg}:=1$	$\mathrm{Lg}:=\mathrm{Lg}$
Ig $:=1$	$\mathrm{Ig}:=\mathrm{Ig}$	$\mathrm{Rg}:=1$	$\mathrm{Rg}:=\mathrm{Rg}$
	$\mathrm{Cgd}:=1$	$\mathrm{Cgd}:=\mathrm{Cgd}$	
Ics $:=1$	Ics $:=\mathrm{Ics}$	$\mathrm{gm}:=1$	$\mathrm{gm}:=\mathrm{gm}$
Id $:=1$	Id $:=\mathrm{Id}$	$\mathrm{Lcs}:=1$	$\mathrm{Lcs}:=\mathrm{Lcs}$
		$\mathrm{Ldl}:=1$	$\mathrm{Ldl}:=\mathrm{Ldl}$
		$\mathrm{Rdl}:=1$	$\mathrm{Rdl}:=\mathrm{Rdl}$
		$\mathrm{Rcs}:=1$	$\mathrm{Rcs}:=\mathrm{Rcs}$

$$
\begin{aligned}
& \mathrm{d}_{\text {_ } \mathrm{dt}_{\mathrm{vds}}}:=1 \quad \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{vds}}:=\mathrm{d}_{\mathrm{d}} \mathrm{dt}_{\mathrm{vds}} \\
& \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{vgs}}:=1 \quad \mathrm{~d}_{2} \mathrm{dt}_{\mathrm{vgs}}:=\mathrm{d}_{-} \mathrm{dt}_{\mathrm{vgs}} \\
& \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{vgd}}:=1 \quad \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{vgd}}:=\mathrm{d}_{-} \mathrm{dt}_{\mathrm{vg}} \mathrm{~d} \\
& \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{ig}}:=1 \quad \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{ig}}:=\mathrm{d}_{\mathrm{d}} \mathrm{dt}_{\mathrm{ig}} \\
& \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{ics}}:=1 \quad \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{ics}}:=\mathrm{d}_{-} \mathrm{dt}_{\mathrm{ics}} \\
& d_{-} d_{i d}:=1 \quad \text { d_dtid }:=d_{-} d t_{i d}
\end{aligned}
$$

The above relations were used to substitute for Ics, Vgd and their derivatives, d dt, in the expressions below.
Denote derivatives by d_dt.

$$
\begin{aligned}
& \text { Given } \\
& \mathrm{Vgs}=\mathrm{Ig} \cdot \mathrm{Rg}+\mathrm{Lg} \cdot \mathrm{~d}_{-} \mathrm{dt}_{\mathrm{ig}}+\operatorname{Lcs} \cdot\left(\mathrm{d}_{-} \mathrm{dt}_{\mathrm{ig}}+\mathrm{d}_{-} \mathrm{dt}_{\mathrm{id}}\right)+\operatorname{Rcs} \cdot(\mathrm{Ig}+\mathrm{Id}) \\
& \mathrm{Ig}=-\mathrm{Cgs} \cdot \mathrm{~d} _\mathrm{dt}_{\mathrm{vgs}}-\mathrm{Cgd} \cdot\left(\mathrm{~d}_{-} \mathrm{dt}_{\mathrm{vgs}}-\mathrm{d}_{-} \mathrm{dt}_{\mathrm{vds}}\right) \\
& \mathrm{Vds}=\mathrm{Id} \cdot \mathrm{Rdl}+\mathrm{Ldl} \cdot \mathrm{~d} _\mathrm{dt}_{\mathrm{id}}+\mathrm{Lcs} \cdot\left(\mathrm{~d}_{-} \mathrm{dt}_{\mathrm{ig}}+\mathrm{d}_{\mathrm{d}} \mathrm{dt}_{\mathrm{id}}\right)+\operatorname{Rcs} \cdot(\mathrm{Ig}+\mathrm{Id}) \\
& \text { Cgd. }\left(\mathrm{d}_{-} \mathrm{dt}_{\mathrm{vgs}}-\mathrm{d}_{-} \mathrm{dt}_{\mathrm{vds}}\right)-\mathrm{gm} \cdot \mathrm{Vgs}-\mathrm{Cds} \cdot \mathrm{~d}_{\mathrm{L}} \mathrm{dt}_{\mathrm{vds}}-\mathrm{Id}=0
\end{aligned}
$$

Solve the above for derivative terms, then solve first order simultaneous equations with constant coefficients.
$\operatorname{Find}\left(\mathrm{d}_{-} \mathrm{dt}_{\mathrm{id}}, \mathrm{d}_{-} \mathrm{dt}_{\mathrm{ig}}, \mathrm{d}_{-} \mathrm{dt}_{\mathrm{vgs}}, \mathrm{d}_{-} \mathrm{dt} \mathrm{vds}\right) \rightarrow\left(\begin{array}{c}\frac{\mathrm{Lcs} \cdot \mathrm{Vds}-\mathrm{Lcs} \cdot \mathrm{Id} \cdot \mathrm{Rdl}+\mathrm{Lg} \cdot \mathrm{Vds}-\mathrm{Lg} \cdot \mathrm{Id} \cdot \mathrm{Rdl}-\mathrm{Lg} \cdot \mathrm{Rcs} \cdot \mathrm{Ig}-\mathrm{Lg} \cdot \mathrm{Rcs} \cdot \mathrm{Id}-\mathrm{Vgs} \cdot \mathrm{Lcs}+\mathrm{Ig} \cdot \mathrm{Rg} \cdot \mathrm{Lcs}}{\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lg} \cdot \mathrm{Ldl}+\mathrm{Lg} \cdot \mathrm{Lcs}} \\ \frac{-\mathrm{Ig} \cdot \mathrm{Rg} \cdot \mathrm{Lcs}+\mathrm{Ldl} \cdot \mathrm{Vgs}+\mathrm{Lcs} \cdot \mathrm{Id} \cdot \mathrm{Rdl}-\mathrm{Lcs} \cdot \mathrm{Vds}+\mathrm{Vgs} \cdot \mathrm{Lcs}-\mathrm{Ldl} \cdot \mathrm{Ig} \cdot \mathrm{Rg}-\mathrm{Rcs} \cdot \mathrm{Ig} \cdot \mathrm{Ldl}-\mathrm{Rcs} \cdot \mathrm{Id} \cdot \mathrm{Ldl}}{\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lg} \cdot \mathrm{Ldl}+\mathrm{Lg} \cdot \mathrm{Lcs}} \\ \frac{-\mathrm{Ig} \cdot \mathrm{Cgd}-\mathrm{gm} \cdot \mathrm{Vgs} \cdot \mathrm{Cgd}-\mathrm{Cds} \cdot \mathrm{Ig}-\mathrm{Id} \cdot \mathrm{Cgd}}{\mathrm{Cgs} \cdot \mathrm{Cgd}+\mathrm{Cds} \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}} \\ \frac{-\mathrm{Cgs} \cdot \mathrm{gm} \cdot \mathrm{Vgs}-\mathrm{Cgs} \cdot \mathrm{Id}-\mathrm{Ig} \cdot \mathrm{Cgd}-\mathrm{gm} \cdot \mathrm{Vgs} \cdot \mathrm{Cgd}-\mathrm{Id} \cdot \mathrm{Cgd}}{\mathrm{Cgs} \cdot \mathrm{Cgd}+\mathrm{Cds} \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}}\end{array}\right)$

By inspection, the terms in the above expression can then be grouped as follows to form a matrix equation:

$$
\left(\begin{array}{c}
\mathrm{d}_{-} \mathrm{dt}_{\mathrm{id}} \\
{\mathrm{~d} _\mathrm{d} t_{\mathrm{ig}}}^{d_{-} \mathrm{dt}_{\mathrm{vgs}}} \\
{\mathrm{~d} _\mathrm{dt}_{\mathrm{vds}}}
\end{array}\right)=\mathrm{A} \cdot\left(\begin{array}{c}
\mathrm{Id} \\
\mathrm{Ig} \\
\mathrm{Vgs} \\
\mathrm{Vds}
\end{array}\right)
$$

Where A is the matrix below.

A :=	$-(\mathrm{Lg}+\mathrm{Lcs}) \cdot \mathrm{Rdl}-\mathrm{Lg} \cdot \mathrm{Rcs}$	Lcs $\cdot \mathrm{Rg}-\mathrm{Lg} \cdot \mathrm{Rcs}$	-Lcs	Lg + Lcs
	$\mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg}$ Rdl•Lcs - Ldl•Rcs	$\begin{aligned} & \hline \mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg} \\ & -(\mathrm{Ldl}+\mathrm{Lcs}) \cdot \mathrm{Rg}-\mathrm{Ldl} \cdot \mathrm{Rcs} \\ & \hline \end{aligned}$	$\begin{gathered} \overline{(\mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg})} \\ \mathrm{Ldl}+\mathrm{Lcs} \end{gathered}$	$\begin{gathered} \mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg} \\ -\mathrm{Lcs} \end{gathered}$
	$\begin{gathered} \mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg} \\ \quad-\mathrm{Cgd} \end{gathered}$	$\begin{gathered} \hline \mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg} \\ -(\mathrm{Cgd}+\mathrm{Cds}) \end{gathered}$	$\begin{gathered} \overline{\mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg}} \\ -\mathrm{Cgd} \cdot \mathrm{gm} \end{gathered}$	$(\mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg})$
	$\begin{gathered} \text { Cds } \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs} \\ -(\mathrm{Cgs}+\mathrm{Cgd}) \end{gathered}$	$\begin{gathered} \mathrm{Cds} \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs} \\ -\mathrm{Cgd} \end{gathered}$	$\begin{gathered} \text { Cds } \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs} \\ -(\mathrm{Cgs}+\mathrm{Cgd}) \cdot \mathrm{gm} \end{gathered}$	
	Cds $\cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs})$	(Cds $\cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs})$	$\overline{\text { Cds } \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs}}$	

The expressions of A can be compacted by defining the terms in the denominators as Leff and Ceff

$$
\text { Leff }:=\sqrt{\text { Ldl } \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg}} \quad \quad \text { Ceff }:=\sqrt{\text { Cds•Cgs + Cds } \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs}}
$$

$$
A:=\left[\begin{array}{cccc}
\frac{-(\mathrm{Lg}+\mathrm{Lcs}) \cdot \mathrm{Rdl}-\mathrm{Lg} \cdot \mathrm{Rcs}}{\mathrm{Leff}^{2}} & \frac{\mathrm{Lcs} \cdot \mathrm{Rg}-\mathrm{Lg} \cdot \mathrm{Rcs}}{\mathrm{Leff}^{2}} & \frac{-\mathrm{Lcs}}{\mathrm{Leff}^{2}} & \frac{\mathrm{Lg}+\mathrm{Lcs}}{\mathrm{Leff}^{2}} \\
\frac{\mathrm{Rdl} \cdot \mathrm{Lcs}-\mathrm{Ldl} \cdot \mathrm{Rcs}}{\mathrm{Leff}^{2}} & \frac{-(\mathrm{Ldl}+\mathrm{Lcs}) \cdot \mathrm{Rg}-\mathrm{Ldl} \cdot \mathrm{Rcs}}{\mathrm{Leff}^{2}} & \frac{\mathrm{Ldl}+\mathrm{Lcs}}{\mathrm{Leff}^{2}} & \frac{-\mathrm{Lcs}}{\mathrm{Leff}^{2}} \\
\frac{-\mathrm{Cgd}}{\mathrm{Ceff}^{2}} & \frac{-(\mathrm{Cgd}+\mathrm{Cds})}{\mathrm{Ceff}^{2}} & \frac{-\mathrm{Cgd} \cdot \mathrm{gm}}{\mathrm{Ceff}^{2}} & 0 \\
\frac{-(\mathrm{Cgs}+\mathrm{Cgd})}{\mathrm{Ceff}^{2}} & \frac{-\mathrm{Cgd}^{2}}{\mathrm{Ceff}^{2}} & \frac{-(\mathrm{Cgs}+\mathrm{Cgd}) \cdot \mathrm{gm}}{\mathrm{Ceff}^{2}} & 0
\end{array}\right]
$$

The above set of simultaneous differential equations is linear with constant coefficients. These equations have solutions of the form $C \exp (\lambda t)$ and they can be solved algebraically by finding the solution to the characteristic equation, which is the determinant of "A $-\lambda I$ ", where I is the 4×4 Identity matrix. $\quad I:=$ identity(4)

Evaluate the determinant and collect the terms in λ below.

$$
|\mathrm{A}-\lambda \cdot \mathrm{I}| \operatorname{collect}, \lambda \rightarrow \frac{\mathrm{Cds} \cdot \mathrm{Cgd} \cdot \mathrm{Lg} \cdot \mathrm{Lcs}+\mathrm{Cds} \cdot \mathrm{Cgd} \cdot \mathrm{Lg} \cdot \mathrm{Ldl}+\mathrm{Cgs} \cdot \mathrm{Cgd} \cdot \mathrm{Lg} \cdot \mathrm{Lcs}+\mathrm{Cgs} \cdot \mathrm{Cgd} \cdot \mathrm{Lg} \cdot \mathrm{Ldl}+\mathrm{Cgs} \cdot \mathrm{Cgd} \cdot \mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Cds} \cdot \mathrm{Cgd} \cdot \mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Cds} \cdot \mathrm{Cgs} \cdot \mathrm{Lg} \cdot \mathrm{Ldl}+\mathrm{Cds} \cdot \mathrm{Cgs} \cdot \mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Cds} \cdot \mathrm{C}:}{(\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lg} \cdot \mathrm{Ldl}+\mathrm{Lg} \cdot \mathrm{Lcs}) \cdot(\mathrm{Cgs} \cdot \mathrm{Cgd}+\mathrm{Cds} \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd})}
$$

The above equation is 10 pages wide. It is of the form: $a_{4} \cdot \lambda^{4}+a_{3} \lambda^{3}+a_{2} \cdot \lambda^{2}+a_{1} \cdot \lambda+a_{0}=0$
This 4th degree equation does not have a closed form solution. We will deal with it by numeric means.
The equation can be compacted by gathering like terms and extracting common terns, Leff and Ceff.
After dropping the common denominator, we copy over the last coefficients a1 and ao. They are:
$\mathrm{a}_{1}=(\mathrm{Rcs}+\mathrm{Rdl}) \cdot \mathrm{Cds}+\mathrm{Lcs} \cdot \mathrm{gm}+(\mathrm{Rdl}+\mathrm{Rg}) \cdot \mathrm{Cgd}+(\mathrm{Rg}+\mathrm{Rcs}) \cdot \mathrm{Cgs}+(\mathrm{Rdl} \cdot \mathrm{Rg}+\mathrm{Rcs} \cdot \mathrm{Rg}) \cdot \mathrm{gmCgd}+\mathrm{Rdl} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd} \cdot \mathrm{gm}$
Gain Factor: $\mathrm{a}_{\mathrm{o}}=1+$ Rcs $\cdot \mathrm{gm}$
The first 9 terms of the above expression for $|A-\lambda| \mid$ form the coefficient a4 of
λ^{4}. By inspection we see that they are product terms of Leff ${ }^{2}$ and Ceff ${ }^{2}$, i..e.

$$
(\mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg}) \cdot(\text { Cds } \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs})
$$

Then a4 = Leff ${ }^{2} \times$ Ceff 2.
Coefficients a3 and a2 are found similarly and are given below.

WITH GATE RFI CAP TO GND, WHAT ARE THE VALUES OF THE FET AND CIRCUIT PARAMETERS?

Cgs is voltage independent. The voltage dependence of Cgs and
Cds flattens out when $\mathrm{Vgs}>3 \mathrm{~V}$ and $\mathrm{Vds}>6 \mathrm{~V}$, respectively.
Hot bulb 10 ohm, I limit $\sim 4 A$, gm $\sim 2 S$

MOTO MTP3055VL DATA SHEET:
ESTIMATES OF COD CIRCUIT PARAMETERS

$$
\begin{aligned}
& \text { Ciss : }=410 \cdot \mathrm{pF} \\
& \text { Crss }:=21 \cdot \mathrm{pF} \\
& \mathrm{Ld}:=3.5 \cdot \mathrm{nH} \\
& \mathrm{~g}_{\mathrm{FS}}:=8.8 \cdot \mathrm{~S} \\
& \text { tr := } 85 \cdot \mathrm{nsec} \\
& \text { Vt }:=1.6 \cdot \text { volt } \\
& \text { Coss }:=114 \cdot \mathrm{pF} \\
& \text { Qt := 8.1•nC } \\
& \text { Ls }:=7.5 \cdot \mathrm{nH} \\
& \text { Rdson := } 0.12 \cdot \Omega \\
& \text { tf }:=43 \cdot n s e c \\
& \text { Rds }:=1 \cdot \Omega \\
& \text { Leff }:=\sqrt{\mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg}} \\
& \mathrm{a}_{4}:=\text { Ceff }^{2} \cdot \text { Leff }^{2} \cdot \sec ^{-4} \\
& \mathrm{a}_{3}:=(\text { Rdl } \cdot \mathrm{Lg} \cdot \mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Ldl} \cdot \mathrm{Lcs} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Ldl} \cdot \mathrm{gm} \cdot \mathrm{Lg} \cdot \mathrm{Cgd}+\mathrm{Lcs} \cdot \mathrm{Rdl} \cdot \mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Ldl} \cdot \mathrm{Rcs}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Lcs} \cdot \mathrm{Rdl}+\mathrm{Cgs} \cdot \mathrm{Ldl} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Rg} \cdot \mathrm{Lcs}+\mathrm{Ldl} \cdot \mathrm{Cds} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd}+\mathrm{C}:
\end{aligned}
$$

$\mathrm{a}_{1}:=(\mathrm{Rcs} \cdot \mathrm{Cds}+\mathrm{Lcs} \cdot \mathrm{gm}+\mathrm{Rdl} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Cgs}+\mathrm{Rdl} \cdot \mathrm{Rg} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Cgd}+\mathrm{Cds} \cdot \mathrm{Rdl}+\mathrm{Rcs} \cdot \mathrm{Cgs}+\mathrm{Rdl} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd} \cdot \mathrm{gm}+\mathrm{Rcs} \cdot \mathrm{Rg} \cdot \mathrm{gm} \cdot \mathrm{Cgd}) \cdot \mathrm{sec}{ }^{-1}$
$a_{0}:=1+$ Rcs.gm $\quad a_{4}=4.619 \times 10^{-3} \mathrm{a}_{3}=7.667 \times 10^{-25} \mathrm{a}_{2}=3.028 \times 10^{-16} \mathrm{a}_{1}=6.01 \times 10^{-8} \quad a_{0}=21$

Solution for the Given Parameters

Find the roots, λ, numerically, for the coefficients a_{x} of characteristic $\quad v:=\left(\begin{array}{llll}a_{0} & a_{1} & a_{2} & a_{3}\end{array} a_{4}\right)^{T}$ equation, $f(\lambda)=0$, given the particular set of parameters given above:
$\mathrm{f}(\lambda):=\mathrm{a}_{4} \cdot \lambda^{4}+\mathrm{a}_{3} \cdot \lambda^{3}+\mathrm{a}_{2} \cdot \lambda^{2}+\mathrm{a}_{1} \cdot \lambda+\mathrm{a}_{0} \quad$ solution $:=\operatorname{polyroots}(\mathrm{v})$
$f(\lambda):=a_{4} \cdot \lambda^{4}+a_{3} \cdot \lambda^{3}+a_{2} \cdot \lambda^{2}+a_{1} \cdot \lambda+a_{0}$
The natural frequency $i \omega=2 \pi$ frea
$\begin{aligned} \operatorname{Im}\left(\text { solution }_{3}\right) \\ 2 \cdot \pi\end{aligned}$ freq $=-4.463 \times 1 \omega \quad \mathrm{f}_{\text {eff }}:=\frac{1}{2 \cdot \pi} \cdot \frac{1}{\sqrt{\text { Leff } \cdot \mathrm{Ceff}}}$ solution $=$
$\mathrm{f}_{\text {eff }}=3.433 \times 10^{7} \mathrm{~Hz}$
$=\left(\begin{array}{c}-1.164 \times 10^{9} \\ -4.968 \times 10^{8} \\ 3.971 \times 10^{5}-2.804 \mathrm{i} \times 10^{8} \\ 3.971 \times 10^{5}+2.804 \mathrm{i} \times 10^{8}\end{array}\right)$

CHARACTERISTICS OF SOLUTIONS:

Because the coefficients of the characteristic equation, a1 through a4, are so small (on the order of $\{\mathrm{nF} \times \mathrm{nH}\}^{2}$), the roots, which we denote as $\sigma+\mathrm{j} \omega$, must be very large (in the negative direction) so that they sum up to - ao, where ao ~ 317. Root locus is not very helpful as an analysis technique because of the huge difference in the size of the roots (109) versus the gain term, ao.

The solution is unstable because the real parts of the last two roots are positive. For analysis of stability, we are most interested in the behavior of the last two complex roots, which have the positive real part. The j ω portion is larger than the real part. These roots have both upper+ and lower- branches. The natural frequency of the instability is equal to 44 MHz .

PLOT ON REAL AXIS, R

From the plot of the curve on the left below, we see that three of the solutions are bunched together into what appears to be a single square at the origin. To spread out this tight range of values, we wish to display the curve as a log-log plot. This requires positive x and y values. We need to flip both the x and y axes. Redefine $\lambda->-\lambda, f f=|f(\lambda)|$, multiply the "solution" by -1 and then plot the solution zeros as boxes. To see the real part, $r,(j \omega=0)$ of the positive unstable solution, shift the plot right by $110^{\wedge} 6$. This gives the original and shifted log-log plots beflow.
fsolution $:=\operatorname{Re}([-1$:

$$
\left.10^{6}\right) \text {) }
$$

$\mathrm{ff}(\lambda):=\mathrm{a}_{4} \cdot(-\lambda)^{4}+\mathrm{a}_{3} \cdot(-\lambda)^{3}+\mathrm{a}_{2} \cdot(-\lambda)^{2}+\mathrm{a}_{1} \cdot-\lambda+\mathrm{a}_{\mathrm{o}} \quad \mathrm{q}:=1 . .4 \quad \operatorname{rr}(\mathrm{r}):=\mathrm{r}-10^{6}$
GRAPHICAL DISPLAY AND VERIFICATION OF THE REAL PART OF ROOTS

Because of the complexity of the dependency and the inter-relation of the roots on the circuit parameters, we gain very little insight about how the stability is affected by the variation of circuit parameters. We will try the classic textbook stability analysis.

Classical Analysis:The Routh Stability Criterion

Routh's Stability Criterion: the number of real positive roots is equal

 to the number of changes in sign in column 1 of the Routh Array.Calculate the Routh parameters. See for example, D'azzo and Houpis,
"Feedback Control System Analysis and Synthesis", pg.121.

$$
\mathrm{c} 1:=\frac{\mathrm{a}_{3} \cdot \mathrm{a}_{2}-\mathrm{a}_{4} \cdot \mathrm{a}_{1}}{\mathrm{a}_{3}} \quad \mathrm{c} 2:=\frac{\mathrm{a}_{3} \cdot \mathrm{a}_{0}}{\mathrm{a}_{3}} \quad \mathrm{~d} 1:=\frac{\mathrm{c} 1 \cdot \mathrm{a}_{1}-\mathrm{a}_{3} \cdot \mathrm{c} 2}{\mathrm{c} 1} \quad \text { e1 }:=\frac{\mathrm{c} 2 \cdot \mathrm{a}_{0}}{\mathrm{c} 2}
$$

$$
\text { RouthArray := }\left(\begin{array}{ccc}
a_{4} & a_{2} & a_{0} \\
a_{3} & a_{1} & 0 \\
\mathrm{c} 1 & \mathrm{c} 2 & 0 \\
d 1 & 0 & 0 \\
\text { e1 } & 0 & 0
\end{array}\right) \quad \text { RouthArray }=\left(\begin{array}{ccc}
4.619 \times 10^{-34} & 3.028 \times 10^{-16} & 21 \\
7.667 \times 10^{-25} & 6.01 \times 10^{-8} & 0 \\
2.666 \times 10^{-16} & 21 & 0 \\
-2.96 \times 10^{-10} & 0 & 0 \\
21 & 0 & 0
\end{array}\right)
$$

There is a change of sign: Therefore there are roots in the right hand plane.
The response function is unstable, i.e. not bounded in time.

Hurwitz Stability Criterion

Polynomials whose zeros have negative real parts are Hurwitz polynomials. The Hurwitz test for stability is that the Hurwitz determinants, Dx, be greater than zero.

The Hurwitz Determinants, D2, D3, D4, for a fourth order polynomial are:

$$
D 2:=\left|\left(\begin{array}{cc}
a_{3} & a_{1} \\
a_{4} & a_{2}
\end{array}\right)\right| \quad D 3:=\left|\left(\begin{array}{ccc}
a_{3} & a_{1} & 0 \\
a_{4} & a_{2} & a_{0} \\
0 & a_{3} & a_{1}
\end{array}\right)\right| \quad D 4:=\left|\left(\begin{array}{cccc}
a_{3} & a_{1} & 0 & 0 \\
a_{4} & a_{2} & a_{0} & 0 \\
0 & a_{3} & a_{1} & 0 \\
0 & a_{4} & a_{2} & a_{0}
\end{array}\right)\right|
$$

Calculate the Hurwitz Determinants. For stability they must be positive.

$$
\text { D2 } 2.2 .044 \times 10^{-40} \quad \text { D3 }=-6.05 \times 10^{-50} \quad \text { D4 }=-1.27 \times 10^{-48}
$$

For the parametric conditions given above, D3 is negative and the circuit is unstable.

We are no better off than before. We still need some strategy to relate the circuit variables to the onset of instability. By trying different parameter values we find that stability is lost only when d1 and D3 go negative. Expanding d1 \& D3 reveals that they are equivalent and equal
to $a_{3} \cdot a_{2} \cdot a_{1}-a_{3} \cdot a_{0}-a_{4} \cdot a_{1}{ }^{2}$. This tells us that instability occurs when

$$
a_{3}^{2} \cdot a_{o}+a_{4} \cdot a_{1}^{2}>a_{3} \cdot a_{2} \cdot a_{1}
$$

METHODOLOGY: This gives us a criterion for instability, but we still need a methodology to gain insight into how the relationships among the circuit parameters affect stability. For this purpose, we will develop and use the concept of stability sensitivity, which is the rate of change of D3 with respect to the circuit parameters. We can then rank the parameters and observe how the direction and magnitude of this sensitivity change with the highest ranking factor.

STRATEGY: DETERMINE THE DIRECTION AND MAGNITUDE OF SENSITIVITY TO INSTABILITY AS FUNCTION OF PARAMETERS

Define Dimensionless Parameters (F, H, Ohm, Siemens)

$$
\mathrm{p}:=10^{-12} \quad \mathrm{n}:=10^{-9}
$$

DIMENSIONLESS VALUES OF THE FET AND CIRCUIT PARAMETERS

$$
\text { Hot bulb } 10 \text { ohm, I limit } \sim 4 \mathrm{~A}, \mathrm{gm} \sim 2
$$

MOTO MTP3055VL DATA SHEET:

Ciss $:=410 \cdot \mathrm{p}$	Coss $:=114 \cdot \mathrm{p}$
$\mathrm{Crss}:=21 \cdot \mathrm{p}$	$\mathrm{Qt}:=8.1 \cdot \mathrm{nC}$
$\mathrm{Ld}:=3.5 \cdot \mathrm{n}$	$\mathrm{Ls}:=7.5 \cdot \mathrm{n}$
g FS $:=8.8$	Rdson $:=0.12$
$\mathrm{tr}:=85 \cdot \mathrm{nsec}$	$\mathrm{tf}:=43 \cdot \mathrm{nsec}$
$\mathrm{Vt}:=1.6 \cdot \mathrm{volt}$	$\mathrm{Rds}:=1$

Evaluate Stability as function of the 10 variables Cgs, Cgd, Cds, Rg, Lg, RdI, Ldl, Rcs, Lcs and gm.
$\mathrm{a}_{4}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Lg}, \mathrm{Ldl}, \mathrm{Lcs}):=(\mathrm{Ldl} \cdot \mathrm{Lg}+\mathrm{Lcs} \cdot \mathrm{Ldl}+\mathrm{Lcs} \cdot \mathrm{Lg}) \cdot(\mathrm{Cds} \cdot \mathrm{Cgs}+\mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgd} \cdot \mathrm{Cgs})$
$\mathrm{a}_{3}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}):=(\mathrm{Rdl} \cdot \mathrm{Lg} \cdot \mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Ldl} \cdot \mathrm{Lcs} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Ldl} \cdot \mathrm{gm} \cdot \mathrm{Lg} \cdot \mathrm{Cgd}+\mathrm{Lcs} \cdot \mathrm{Rdl} \cdot \mathrm{Cds} \cdot \mathrm{Cgd}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Ldl} \cdot \mathrm{Rcs}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Lcs} \cdot \mathrm{Rdl}+\mathrm{Cgs} \cdot \mathrm{Ldl} \cdot \mathrm{Rcs} \cdot($ $\mathrm{a}_{2}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}):=(\mathrm{Ldl} \cdot \mathrm{Cds}+\mathrm{Lcs} \cdot \mathrm{Cgs}+\mathrm{Lg} \cdot \mathrm{Cgs}+\mathrm{Cgs} \cdot \mathrm{Rdl} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd}+\mathrm{Cgs} \cdot \mathrm{Rcs} \cdot \mathrm{Rg} \cdot \mathrm{Cgd}+\mathrm{Lcs} \cdot \mathrm{Cds}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Rcs} \cdot \mathrm{Rg}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Rdl} \cdot \mathrm{Rg}+\mathrm{Cgs} \cdot \mathrm{Rdl} \cdot$ $\mathrm{a}_{1}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}):=(\mathrm{Rcs} \cdot \mathrm{Cds}+\mathrm{Lcs} \cdot \mathrm{gm}+\mathrm{Rdl} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Cgs}+\mathrm{Rdl} \cdot \mathrm{Rg} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Cgd}+\mathrm{Cds} \cdot \mathrm{Rdl}+\mathrm{Rcs} \cdot \mathrm{Cgs}+\mathrm{Rdl} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd} \cdot \mathrm{gm}+\mathrm{Rcs} \cdot \mathrm{Rg} \cdot \mathrm{gm} \cdot \mathrm{Cgd})$ $\mathrm{a}_{\mathrm{o}}($ Rcs, gm$):=1+$ Rcs $\cdot \mathrm{gm} \quad \mathrm{a}_{4}($ Cgs, Cgd, Cds, Lg, Ldl, Lcs $)=4.619 \times 10^{-34}$

Define Hurwitz Criteria, d3, as a function of Cgs, Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs and gm.

$$
D 3=a_{3} \cdot a_{2} \cdot a_{1}-a_{3}^{2} \cdot a_{0}-a_{4} \cdot a_{1}^{2}
$$

d3(Cgs, Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm) := a3 (Cgs, Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm) $\cdot \mathrm{a}_{2}$ (Cgs, Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm) $\cdot \mathrm{a}_{1}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Rcs}$ $+-\mathrm{a}_{3}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})^{2} \cdot \mathrm{a}_{\mathrm{o}}(\mathrm{Rcs}, \mathrm{gm})-\mathrm{a}_{4}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Lg}, \mathrm{Ldl}, \mathrm{Lcs}) \mathrm{a}_{1}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Rc}$ Check Results: d3 vs D3: $\quad \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}$, Rdl, Ld 1, Rcs, Lcs, gm$)=-6.05 \times 10^{-50} \quad$ D3 $=-6.05 \times 10^{-50}$

Roots of Characteristic Equation

$\mathrm{vv}:=\left(\mathrm{a}_{\mathrm{o}}(\right.$ Rcs, gm$) \mathrm{a}_{1}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}) \mathrm{a}_{2}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}) \quad \mathrm{a}_{3}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}) \quad \mathrm{a}_{4}(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}$, roots $:=\operatorname{polyroots}(\mathrm{vv}) \quad$ freq $:=\frac{\operatorname{Im}\left(\text { roots }_{3}\right)}{2 \cdot \pi} \quad$ freq $=4.406 \times 10^{7}$

STABILITY SENSITIVITY ANALYSIS @Estimated Ckt Parameters

Sensitivity Ranking @ECP: Cgd, Cds, Cgs, Lg, Lcs, Ldl, gm, RdI, Rg, Rcs.
From the plot below, the only parameters that always damp* are Rg \& Rdl. Sensitivity sign*, magnitude \& ranking changes with the parameter values. In particular, the sign of Lg varies with the magnitude of other parameters. Rg \& Rdl are < other sensitivities, but dominate because others flip signs. The $\mathbf{R g}$ effect is very similar to that of RdI. The greatest change is for Cgd.
The effect of Cgd is a factor of 10^{10} or more larger than Rg, RdI, gm \& Rcs. The size or the effect of a sensitivity decreases with its relative magnitude. Lcs is critical in affecting the natural frequency, band width.

> |RANKING|, MAGNITUDES AND SIGNS OF STABILITY SENSITIVITIES $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{dCgd}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=5.517 \times 10^{-38} \\ & \frac{\mathrm{~d}}{\mathrm{dCds}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=-8.379 \times 10^{-39} \\ & \frac{\mathrm{~d}}{\mathrm{dCgs}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=-2.896 \times 10^{-39} \\ & \frac{\mathrm{~d}}{\mathrm{dLg}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=-1.275 \times 10^{-40} \\ & \frac{\mathrm{~d}}{\mathrm{dLcs}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=1.7 \times 10^{-40} \\ & \frac{\mathrm{~d}}{\mathrm{dLdl}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=-2.905 \times 10^{-41} \\ & \frac{\mathrm{~d}}{\mathrm{dgm}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=2.844 \times 10^{-49} \\ & \frac{\mathrm{~d}}{\mathrm{dRg}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=9.778 \times 10^{-49} \\ & \frac{\mathrm{~d}}{\mathrm{dRdl}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm})=1.007 \times 10^{-48}\end{aligned}$
$\frac{\mathrm{d}}{\mathrm{dRcs}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}$, Rdl, Ldl, Rcs, Lcs, gm$)=-2.346 \times 10^{-49}$

Define a Stability Function, DRL, as a function of some +/-Sensitivity pairs
DRL(Rg,Rdl,Lg, Rcs,Lcs,gm) $:=\left(\mathrm{d} 3(\right.$ Cgs, Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm $) \cdot 10^{47}$

X/Y STABILITY CONTOURS FOR +/- SENSITIVITY PAIRS

Plot the Stability Contour Pairs of Log Lg vs Rg/Rdl, Rcs vs Rdl and Rcs vs Log gm

$$
\begin{aligned}
& \operatorname{Lmin}:=1 \quad \operatorname{Lmax}:=10^{4} \quad \operatorname{gmin}:=0.1 \quad \operatorname{gmax}:=10 \quad \mathrm{~N}:=40 \quad \mathrm{i}:=1 . . \mathrm{N} \quad \mathrm{j}:=1 . . \mathrm{NRG}_{\mathrm{i}}:=\mathrm{i} \quad \mathrm{RD}_{\mathrm{i}}:=\mathrm{i} \cdot 0.5 \\
& r_{l}:=\ln \left(\frac{L \max }{L \min }\right) \quad L G_{j}:=\operatorname{Lmin} \cdot e^{j \cdot \frac{r_{1}}{N}} \quad r_{g m}:=\ln \left(\frac{g \max }{g \min }\right) \quad G M_{i}:=g \min \cdot e^{i \cdot \frac{r_{g m}}{N}}
\end{aligned}
$$

Stable Region is at bottom and $R g>30 \Omega$

$\mathrm{D}_{\mathrm{i}, \mathrm{j}}:=\mathrm{if}\left(\mathrm{DRL}\left(\mathrm{RG}_{\mathrm{i}},{\left.\mathrm{Rdl}, \mathrm{LG}_{\mathrm{j}} \cdot \mathrm{n}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}\right)}\right)>0,1,-1\right)$

D

Stable Region is at bottom and RdI $>8 \Omega$

DD
UnStable Region is at bottom left. Lg is 10X

Stable Region is at bottom and right
$\mathrm{DSD}_{\mathrm{i}, \mathrm{j}}:=\operatorname{if}(\mathrm{DRL}(\mathrm{Rg}, \mathrm{i} \cdot 0.1, \mathrm{Lg}, \mathrm{j}, \mathrm{Lcs}, \mathrm{gm})>0,1,-1)$

DSD
UnStable Region center. USR shrinks w Rg

$$
\mathrm{DG}_{\mathrm{i}, \mathrm{j}}:=\operatorname{if}(\mathrm{DRL}(\operatorname{Rg}, \operatorname{Rdl}, \mathrm{Lg}, \mathrm{j}, \operatorname{Lcs}, \mathrm{i} \cdot 0.1)>0,1,-1)
$$

$$
\mathrm{DG}_{10,20}=-1 \quad \mathrm{DG}_{10,5}=1 \quad \mathrm{DG}_{35,30}=1
$$

DG
UnStable Region center. USR shrinks w Rg

$\mathrm{GD}_{10.20}=1 \quad \mathrm{GD}_{2.2}=-1$
Stability Contour, Rdl (0.5) vs Rg

GD
$\mathrm{DL}_{10.20}=-1 \quad \mathrm{DL}_{10.5}=1$
Gain Stability, $\log \operatorname{Lg}(0.1 \mathrm{nH})$ vs $\log \mathrm{gm}(0.1)$

DL

DIRECTION OF INSTABILITY CHANGES WITH CAPACITANCE

Below we see that changing the capacitances singlely, eg. only Cgs, changes the sign of sensitivities.
$\mathrm{x}:=0.1,0.6 . .10$ Vary Cgs with factor x : $\mathrm{C}_{\mathrm{gs}}(\mathrm{x}):=\mathrm{x} \cdot \mathrm{Cgs}$
We find that with the exception of Rg and Rdl, which always damp, the sign of d 3 and the signs of all the other sensitivities flip with decreased Cgs and also Cds. For decreased Cgs or Cds, increasing these factors increases stability. The Cgd capacitances has the opposite effect. Also the effects of the $\mathrm{C}(\mathrm{s})$ on the Sensitivities of Lcs, Rg, Rdl, gm are very similar and differ only in magnitude.

List in order of above relative rankings. For a common plot, multiply by factor (1/|sensirvity|) to scale plot close to 1 .

Increasing the parameters with sensitivities in the top half of the plot damps oscillations. Increasing Rg or Rdl moves all the curves up.
d3($\mathrm{C}_{\mathrm{gs}}(\mathrm{x})$, Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm $) \cdot 10^{47.5}$ $\frac{\mathrm{d}}{\mathrm{dCgd}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x})\right.$, Cgd, Cds, Rg, Lg, Rdl, Ldl , Rcs, Lcs, gm $) \cdot 10^{37}$ $\frac{d}{d C d s} \mathrm{~d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}\right.$, Rdl, Ldl, Rcs, Lcs, gm$) \cdot 10^{38}$ $\underset{x-x-x}{\mathrm{dCds}}$
$\frac{\mathrm{d}}{\mathrm{dLg}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}\right.$, Rdl, Ldl , Rcs, Lcs, gm$) \cdot 10^{39}$ $\frac{d}{d L e s} d 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}\right.$, Rcs, Lcs, gm$) \cdot 10^{39}$ dLcs

O $\frac{\mathrm{d}}{\mathrm{dLdl}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}\right.$, Rdl, Ldl , Rcs, Lcs, gm$) \cdot 10^{40}$ ヨఅヨ
$\frac{\mathrm{d}}{\mathrm{dgm}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}\right.$, Rdl, Ldl , Rcs, Lcs, gm$) \cdot 10^{47}-0.2$ dgm
$\frac{d}{d R g} d 3\left(C_{g s}(x), C g d, C d s, R g, L g\right.$, Rdl, Ldl, Rcs, Lcs, gm $) \cdot 10^{48}$ $\frac{\mathrm{d}}{\mathrm{dRdl}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x})\right.$, Cgd, Cds, Rg, Lg, Rdl, Ldl , Rcs, Lcs, gm$) \cdot 10^{48}$
Sign changes (Not Rg/Rdl) Sens'ty vs Cgs

DIRECTION OF INSTABILITY CHANGES WITH Rg

Vary Rg by a factor x :

$$
\mathrm{x}:=0.1,0.6 . .10 \quad \mathrm{R}_{\mathrm{g}}(\mathrm{x}):=\mathrm{x} \cdot 5
$$

Except for Rdl, the sign of All of the sensitivites flip with Rg and similarly with Rdl.

CHANGE OF MAGNITUDE OF SENSITIVITY vs．CAPACITANCES

Observe the effect of changing all three of the capacitances collectively．Only the magnitude changes．
Vary Cgs，Cgd，Cds with factor $x: \quad C_{g s}(x):=x \cdot C g s \quad C_{g d}(x):=x \cdot \operatorname{Cgd} \quad C_{d s}(x):=x \cdot C d s$
$\mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{C}_{\mathrm{gd}}(\mathrm{x}), \mathrm{C}_{\mathrm{ds}}(\mathrm{x}), \mathrm{Rg}, \mathrm{Lg}\right.$, Rdl，Ldl ，Rcs，Lcs， gm$) \cdot 10^{47.5}$ ＋1＋ $\frac{\mathrm{d}}{\mathrm{dLg}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{C}_{\mathrm{gd}}(\mathrm{x}), \mathrm{C}_{\mathrm{ds}}(\mathrm{x}), \operatorname{Rg}, \mathrm{Lg}\right.$, Rdl，Ldl ，Rcs，Lcs, gm$) \cdot 10^{39}$ $\frac{\mathrm{d}}{\mathrm{dLcs}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{C}_{\mathrm{gd}}(\mathrm{x}), \mathrm{C}_{\mathrm{ds}}(\mathrm{x}), \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}\right.$, Rcs，Lcs， gm$) \cdot 10^{39}$ $\underset{*}{\text { dLes }}$
$\frac{\mathrm{d}}{\mathrm{dLdl}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{C}_{\mathrm{gd}}(\mathrm{x}), \mathrm{C}_{\mathrm{ds}}(\mathrm{x}), \mathrm{Rg}, \mathrm{Lg}\right.$, Rdl，Ldl, Rcs， $\left.\mathrm{Lcs}, \mathrm{gm}\right) \cdot 10^{40}$
$\because \frac{\mathrm{d}}{\mathrm{dgm}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{C}_{\mathrm{gd}}(\mathrm{x}), \mathrm{C}_{\mathrm{ds}}(\mathrm{x}), \mathrm{Rg}, \mathrm{Lg}\right.$, Rdl，Ldl，Rcs，Lcs， gm$) \cdot 10^{47}$ －ค
$\frac{\mathrm{d}}{\mathrm{dRg}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{C}_{\mathrm{gd}}(\mathrm{x}), \mathrm{C}_{\mathrm{ds}}(\mathrm{x}), \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}, \operatorname{Rcs}, \operatorname{Lcs}, \mathrm{gm}\right) \cdot 10^{48}-0.2$ dRg
曰もセ
$\frac{\mathrm{d}}{\mathrm{dRdl}} \mathrm{d} 3\left(\mathrm{C}_{\mathrm{gs}}(\mathrm{x}), \mathrm{C}_{\mathrm{gd}}(\mathrm{x}), \mathrm{C}_{\mathrm{ds}}(\mathrm{x}), \mathrm{Rg}, \mathrm{Lg}, \mathrm{Rdl}, \mathrm{Ldl}\right.$, Rcs $\left., \mathrm{Lcs}, \mathrm{gm}\right) \cdot 10^{48}-0.4$ $\stackrel{\text { dRdl }}{---}$
d
$\overline{\mathrm{dRcs}}$

PLOT LOCII OF INSTABILITY

CREATE THE STABILITY FUNCTION,

US

Find the Gate Inductance, Lg, at the transition to UnStable Operation for Rg from 1 to 20 ohm and for Cgs 1 to $3 \times$ Cgs for given values of Rcs \& Lcs.

UG :=	$\begin{aligned} & \text { for } L \in 1 . .4 \\ & \qquad \begin{array}{l} \mathrm{F} \leftarrow 1 \\ \text { for } \mathrm{rg} \in 1 . .70 \\ \mathrm{~d} \leftarrow 0+0.1 \\ \mathrm{Lgg} \leftarrow 10^{\mathrm{L}} \\ \mathrm{rgg} \leftarrow \mathrm{rg}+0.01 \\ \mathrm{D} 3 \leftarrow \mathrm{~d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{rgg}, \mathrm{Lgg} \cdot \mathrm{n}, \mathrm{~d}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}) \\ \text { while } 0>10^{30} \cdot \mathrm{D} 3 \\ \left\lvert\, \begin{array}{l} \mathrm{D} 3 \leftarrow \mathrm{~d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{rgg}, \mathrm{Lgg} \cdot \mathrm{n}, \mathrm{~d}, \mathrm{Ldl}, \mathrm{Rcs}, \mathrm{Lcs}, \mathrm{gm}) \\ \mathrm{break} \text { if }(\mathrm{d}>100) \\ \mathrm{d} \leftarrow \mathrm{~d}+1 \end{array}\right. \\ \mathrm{~S} \\ \mathrm{rg}, \mathrm{~L} \leftarrow \mathrm{~d} \\ \text { if } \begin{array}{l} \mathrm{F}=1) \cdot \mathrm{d}=0.1 \end{array} \\ \left\lvert\, \begin{array}{l} \mathrm{S}_{71, \mathrm{~L}} \leftarrow \mathrm{rg} \\ \mathrm{~F} \leftarrow 0 \end{array}\right. \end{array} \end{aligned}$

Parameter Approximations for Rdl and Rg for Stable Operation

$$
\begin{aligned}
& \operatorname{RdlUS}(\mathrm{Rg}, \mathrm{Lg}):=1+6.1 \cdot \log (\mathrm{Lg})-\frac{\mathrm{Rg} \cdot 1.6}{\log (\mathrm{Lg})} \\
& \operatorname{RgUS}(\mathrm{Rdl}, \mathrm{Lg}):=\frac{(1+6.1 \cdot \log (\mathrm{Lg})-\mathrm{Rdl}) \cdot \log (\mathrm{Lg})}{1.6}
\end{aligned}
$$

$$
\text { UGG }:=\text { UG } \quad \operatorname{rg}:=1 . .70
$$

$\mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, 2,10 \cdot \mathrm{n}, 6, \mathrm{Ldl}$, Rcs $, \mathrm{Lcs}, \mathrm{gm})=9.064 \times 10^{-49}$
$\mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, 2,10 \cdot \mathrm{n}, 2$, Ldl, Rcs,Lcs, gm $)=-2.821 \times 10^{-49}$
Stable Region is at top. Lg decreases Region of Stability

$$
\begin{array}{lll}
\mathrm{nn}:=1 . .4 & \text { Rslope }_{\mathrm{nn}}:=\frac{\left(\mathrm{UGG}^{\langle\mathrm{nn}\rangle}\right)_{1}}{\left(\mathrm{UGG}^{\langle\mathrm{nn}\rangle}\right)_{71}} \cdot \mathrm{nn} & \text { Rslope }=\left(\begin{array}{c}
1.22 \\
1.613 \\
1.41 \\
1.567
\end{array}\right) \\
& \mathrm{nH} \equiv 10^{-9} \cdot \mathrm{H} \quad \mathrm{nsec} \equiv 10^{-9} \cdot \mathrm{sec} & \mathrm{sq} \equiv 1
\end{array} \quad \mathrm{nC} \equiv 10^{-9} \cdot \mathrm{C} .
$$

Does increasing Rg ever increase instability?
Given $\quad\left[\left(\frac{\mathrm{d}}{\mathrm{dRg}} \mathrm{d} 3(\mathrm{Cgs}, \mathrm{Cgd}, \mathrm{Cds}, \mathrm{Rg}, \mathrm{Lg}\right.\right.$, Rdl, Ldl, Rcs, Lcs, gm $\left.\left.)\right) \cdot 10^{50}\right]<-1$
Cgs $>10^{-10} \mathrm{Cgd}>10^{-10} \mathrm{Cds}>10^{-10} \mathrm{Lg}>10^{-8} \mathrm{Rcs}>0 \quad \mathrm{Lcs}>10^{-8} \mathrm{gm}>0.1$
AA := Find(Cgs,Cgd,Cds,Lg,Lcs, Rcs,gm)
$\mathrm{AA}^{\mathrm{T}}=\left(\begin{array}{lllll}-1.389 \times 10^{-9} & 10 \times 10^{-11} & 2.14 \times 10^{-10} & 3 \times 10^{-8} & 1.75 \times 10^{-8} \\ 10 & 2\end{array}\right)$
$\left(\frac{\mathrm{d}}{\mathrm{dRg}} \mathrm{d} 3\left(\mathrm{AA}_{1}, \mathrm{AA}_{2}, \mathrm{AA}_{3}, \mathrm{Rg}, \mathrm{AA}_{4}, \operatorname{Rdl}, \mathrm{Ldl}, \mathrm{AA}_{5}, \mathrm{AA}_{6}, \mathrm{AA}_{7}\right)\right)=5.166 \times 10^{-24}$ $\mathrm{Ldl} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Lcs} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Rdl} \cdot \mathrm{Rcs}+\mathrm{Lcs} \cdot \mathrm{Rdl} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Rdl} \cdot \mathrm{Cds} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Ldl} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Ldl} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd} \cdot \mathrm{gm}+\mathrm{Lg} \cdot \mathrm{Cgd}+\mathrm{Rcs} \cdot \mathrm{Cds} \cdot \mathrm{Rg} \cdot \mathrm{Cgd}+\mathrm{Lg} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd} \cdot \mathrm{gm}) \cdot \mathrm{sec}{ }^{-2}$

こgd + Cgs \cdot Cds \cdot Rg \cdot Lcs + Ldl \cdot Cds \cdot Rcs \cdot Cgd + Cgs $\cdot \mathrm{Ldl} \cdot \mathbf{R g} \cdot \mathrm{Cgd}+$ Cgs $\cdot \mathrm{Lcs} \cdot \mathrm{Rdl} \cdot \mathrm{Cgd}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Rdl} \cdot \mathrm{Lg}+\mathrm{Cgs} \cdot \mathrm{Lg} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Ldl} \cdot \mathrm{Rg}+\mathrm{Lg} \cdot \mathrm{Cds} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Lcs} \cdot \mathrm{Cgd} \cdot \mathrm{Cds}+\mathrm{Lcs} \cdot \mathrm{g}$ $\mathrm{Rg} \cdot \mathrm{Cgd}+\mathrm{Rdl} \cdot \mathrm{Cds} \cdot \mathrm{Rg} \cdot \mathrm{Cgd}+\mathrm{Rdl} \cdot \mathrm{Lg} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Ldl} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Lcs} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Cgs} \cdot \mathrm{Cds} \cdot \mathrm{Rdl} \cdot \mathrm{Rcs}+\mathrm{Lcs} \cdot \mathrm{Rdl} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Rdl} \cdot \mathrm{Cds} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd}+\mathrm{Rg} \cdot \mathrm{Ldl} \cdot \mathrm{gm} \cdot \mathrm{Cgd}+\mathrm{Ldl} \cdot \mathrm{Rcs} \cdot \mathrm{Cgd} \cdot \mathrm{gm}+\mathrm{Lg} \cdot \mathrm{Cgd}+$

,Lcs, gm) ...

s,Lcs,gm) ${ }^{2}$

Lg, Ldl, Lcss) $)^{T}$
$\mathrm{s}+\mathrm{Cgs} \cdot \mathrm{Rg} \cdot \mathrm{Lcs} \cdot \mathrm{Cgd}+\mathrm{Ldl} \cdot \mathrm{Cds} \cdot \mathrm{Rg} \cdot \mathrm{Cgd}) \cdot \mathrm{Sec}^{-3}$

