
.  1D Coaxial Photonic Crystal - Superluminal

J. N. Munday and W. M. Robertson have reported observing: Negative group velocity

pulse tunneling through a coaxial photonic crystal, Applied Physics Letters, Sept.

2002. In the following, we analyze this situation using Mathcad.

When a signal traverses an impedance boundary, it experiences a phase shift

and a partial reflection that can be calculated from the generalized optical Fresnel

coefficients of reflection r (|Vreflected/Vincident|) and transmission t

|Vtransmitted/Vincident|).  This can be generalized to coaxial cables using

characteristic impedance,  where zi, zr and zt are the impedance of the incident,

refelected and transmitted media.  
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Periodic variation in the impedance of a medium can produce destructive interferrence

for some wavelengths.The phase accumulated throughout the crystal changes rapidly with

frequency, especially near the band gap.

A unit cell consists of two coax segments, one of 50 ohm RG-58/U and one with 75

ohm RG-59/U. Each segment has the same phase velocity 0.66c and length 8 ft. As a result of

impedance mismatch, 20% of the field is reflected at each interface. 12 unit cells of total length

120 m are used.  A deep stop gap between 18 and 23 MHz occurs. Outside gap the attenuation

is 25 - 35 dB/km.  Stop occurs when path length of unit cell is multiple of l/2.

To calculate dispersive properties and group velocity, the effective index theory is used.

The theory says phase shift and scattering loss of the electric field is from an effective complex

index of refraction.  the real part of the index, nr, is obtained from the overall phase shift f

accumulated throught the crystal of length D.  t is the complex coefficient of electric field

transmission over the whole crystal and m = 0
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We transmit a sinusoidal carrier with a Gaussian shaped pulse envelope.   For carrier of 5 -

15 MHz pulse duration was scaled from 6 to 2 us, keeping the number of cycles within the 

envelope constant at 30 while varying the bandwidth fro 0.15 to 0.45 MHz. 

 COAXIAL CABLE MODEL

Number of Sections, N l58 20 m⋅:= l59 15 m⋅:=
 Physical Constants

c 299792458
m

sec
⋅:= μo 4 π⋅ 10

7−
⋅

newton

amp
2

⋅:= εo 8.854187817 10
12−

⋅
farad

m
⋅:=

ρcu 1.673 10
6−

⋅ Ω⋅ cm⋅:= σ ρcu
1−

:= μr 1:= μ μo μr⋅:= λo f( )
c

f
:=

 RG-58/U  ( 50 ΩΩΩΩ )  and RG-59/U (75 ΩΩΩΩ )         Coaxial Cable Data:

εr is the dielectric constant Ydb is attenuation in dB
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 Coaxial Cable Model
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 Characteristic Impedance 

 (a is conductor and b is dielectric radii, Llen and Clen are L and C per length. ):
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 Attenuation, Phase and  Propogation Constants: α , β, γ Z58olc 46.36Ω=
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 Reflection and Transmission Coefficients, t and r

From Maxwells Equations: Plane incident E-M wave traveling from medium A to B
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 Structure of Lengths of N unit cells starting with Len58 N 12:=
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 Field Amplitudes, E, for Transmitted and Reflected Waves

 Phase  φφφφ  - Effective Index Theory 
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 Calculate Complex Vector Arrays to Store Results for Plotting
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Below are exact solutions.  Evaluation was disabled because they take a 

long time to calculate each function and then repaint each of the graphs
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I mpedance Model
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 12 Alternating RG58/59 Sections Cable
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VSWR:

The traditional way to determine the reflection coefficient is to measure the standing wave

caused by the superposition of the incident wave and the reflected wave. Traditionally the voltage

is measured at a series of points using a slotted line. The ratio of the maximum divided by the

minimum is the Voltage Standing Wave Ratio (VSWR). The VSWR is infinite for total reflections

because the minimum voltage is zero. If no reflection occurs the VSWR is 1.0. VSWR and

reflection coefficient are related as follows: 

Multiple ReflectionsIf there is a series of impedance changes, each one will cause a

reflection. The total reflection is the vector addition of each of the individual coefficients

accounting for the distance between discontinuities. Even though the calculations are difficult, a

total VSWR can still be measured. 



 Type of Pulse Wave Packet for Transmission into Photonic Crystal Cable
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