# Top Fuel Dragster Performance Simulation

The Simulation can be run or modified with Mathcad 14/15. Free Trial at: http://www.ptc.com/product/mathcad/free-trial <u>Mathcad Simulation at: http://www.LeapCad.com/Top Dragster Performance Simulation.xmcd</u> 9-19-2015



# **Goal: Simulate Top Fuel Dragster Performance**

## **TABLE OF CONTENTS**

- I. Introduction Basics
- **II.** Macro Model Performance Discussion:
- **III. Specifications & Engineering Estimates: Peak Acceleration**
- IV. Tire Traction & Control Models: Perfect Tire Grip, Tires  $\mu = 4$
- V. Model Results & Validation Validates that Simulation Results Match Data
- VI. Performance Curves of Model Results
- VII. Tire Friction/Grip (Tire Composition and Width)

## **I.** Introduction - Basics

## Examining the 2010 Kalitta Motorsports Dragster Specs (2014 has 1.25X Power & Torque) Specifications March 13, 2010

| Max hp: 8,000 hp(2014 Specs 10,000 hp) 1.25XTorque: 8100 N-M, 6000 lbf ft(2014 Specs 7400 ft lbf) 1.23X90% nitromethane 10% alchohol, 5 gal/4 sec, with 700 hp superchargerClutch is Critical: 5 disc clutch - no transmission. Controlled by centrepital force.Gear Ratio: 3.20 to 1Goodyear large diameter, large width, low inflation pressure tire.R36x17.5-16"36" diameter at start, expand to 44 in, average 40 inTrack coated with adhesive for maximum traction.Tire Coefficient of Friction: 4Front wheels are off the ground for first 200 ft of run |                                     |        |                                  |        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|----------------------------------|--------|--|--|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | os 44 amps per spark plug Perfe     | rmance | <u>mance Table: sec, ft, mph</u> |        |  |  |
| Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2300 lbf                            | (0.05  |                                  | 4)     |  |  |
| Perfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nance Specs, Perf Table             | 0.5    |                                  | 73.89  |  |  |
| 0.5 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |        |                                  |        |  |  |
| 1 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52 ft 113.82 mph                    | 1      | 52                               | 113.82 |  |  |
| 1.5s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125 ft 162 mph                      | 1.5    | 125                              | 162    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 232 ft 213 mph 7 7200 rpm PerfTab : | = 2    | 232                              | 213    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 379.9 ft 248.5 mph 6599 rpm         |        |                                  |        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 566 ft 271.6 mph                    | 2.5    | 379.9                            | 248.5  |  |  |
| 3.83 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000 ft 321.6 mph                   | 3      | 566                              | 271.6  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 3.83   | 1000                             | 321.6  |  |  |



### II. Macro Performance Model Discussion & Description of the Model

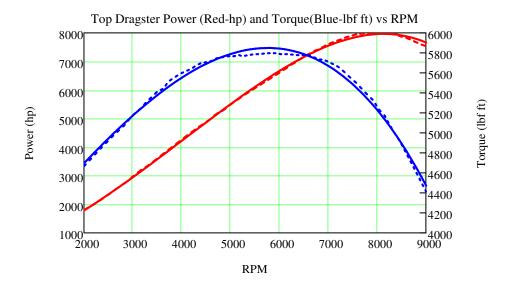
**Macro Model:** Macro Models requires only limited knowledge of internal parameters. We treat the system as a Black Box. That is, we don't know the details of what's inside, just a few fundamental parameters. We are only interested in overall performance. Ignore the intricacies. Simple, but not too simple. May not know what is inside, but regardless, the laws of Physics still apply. **This model ignores the initial boost in acceleration from aerodynamic down forces and the 700 hp Power Losses needed to operate the SuperCharger. It does include aerodynamic and tire drag forces.** We will just use the basic physical parameters such as given in Section III and Section IV Models:

### Read Data Plot Data for Power and Torque vs. RPM 2009 Castillo

| PowerPlot := READPRN("Castillo Top Drag RPM vs Power.csv") - 12 | rows(PowerPlot) = 56  |
|-----------------------------------------------------------------|-----------------------|
| TorquePlot := READPRN("Castillo Top Drag RPM vs Torque.csv")    | rows(TorquePlot) = 54 |

f := 30

### **Fit Power Curves to Data Plots**


| Guess   | a := 1                  | b := 1                     | <u>c</u> .≔ 1        | d := 27                | e:= 1               |
|---------|-------------------------|----------------------------|----------------------|------------------------|---------------------|
|         |                         |                            | spd :=               |                        | $\langle 0 \rangle$ |
| Torq –  | $a \cdot (spd)^3 - 1$   | $b \cdot (spd - c)^2$      | $-d \cdot (spd - d)$ | e) + f = 0             |                     |
| Torque( | $(s) := At_0 \cdot (s)$ | $a^3 - At_1 \cdot (s + s)$ | $-At_2^2$ - At       | $x_3 \cdot (s - At_4)$ | + At <sub>5</sub>   |

At := Minerr(a, b, c, d, e, f) Torque(6000) = 5844.32  $S_{m}$  := 2000, 2100.. 9000 Torque<sub>max</sub> := max(Torq) = 5799.13

#### Calculate Power as Torque x RPM

 $Power(RPM) := Torque(RPM) \cdot \frac{RPM \cdot lbf \cdot ft \cdot 2 \cdot \pi}{60 \cdot s}$ 

| d (ft)  | 0 | 60    | 330   | 660    | 1000  | 1320   |
|---------|---|-------|-------|--------|-------|--------|
| t (s)   | 0 | 0.842 | 2.142 | 3.058  | 3.831 | 4.500  |
| v (mph) | - | -     | -     | 280.66 | -     | 334.15 |



# **III. Specifications & Engineering Estimates: Peak Acceleration**

| Max Power:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $Power_{max} := 8000 \cdot hp$                             | RPM <sub>max</sub> := 9000                                                              | Gear Ratio:                   | GR := 3.20                                                                                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <u>Max Torque</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $T_{max} := Torque_{max} \cdot lbf \cdot ft$               | Rear Tire: R36x17.5-16"                                                                 | $r_{tire} := \frac{40}{2} in$ | $F_{\text{Motor}_{\text{Max}}} := \frac{T_{\text{max}} \cdot GR}{T_{\text{max}} \cdot GR}$                                          |  |  |
| Tire Coefficient of Friction, µ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_{max} = 5799.13  \text{lbf} \cdot \text{ft}$ $\mu := 4$ | $\operatorname{car}_{\max_g} := \mu \cdot g$                                            | k := 1000                     | $\tau := 1 \cdot \sec$                                                                                                              |  |  |
| Curb Weight:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $M_{curb} := 23001bm$                                      | $M_{gross} := M_{curb} + 160lbm =$                                                      | 2460·1bm                      |                                                                                                                                     |  |  |
| Aerodynamic Drag Coeff (TM):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cd := 0.35                                                 | Average Wind Velocity:                                                                  | $Vw := 0 \cdot mph$           |                                                                                                                                     |  |  |
| Cross Wind Drag Coff:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Cd_{cw} := 0.000014$                                      | Effective Cross Wind V:                                                                 | $V_{cw} := 0 \cdot mph$       |                                                                                                                                     |  |  |
| Shape Correction Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SCF := 0.85                                                | Vehicle Frontal Dimensions:                                                             | Af := $(57 - 7.9)$            | in·77·in                                                                                                                            |  |  |
| Air Density, tire resistance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\rho := 1.293 \cdot \frac{\text{gm}}{\text{liter}}$       | Drag Frontal Area                                                                       | $Ad := Af \cdot SCF$          | $Ad = 2.07 \cdot m^2$                                                                                                               |  |  |
| Road Rolling Resistance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $RR_{road} := 0.007$                                       | Tire Rolling Resist, Hys:                                                               | $RR_{tire} := 0.011$          | $T_{hys} := 0 \cdot \frac{sec}{m}$                                                                                                  |  |  |
| Effective Mass Coefficient:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k <sub>m</sub> := 1.0447                                   | $g_{max} \coloneqq \frac{T_{max} \cdot GR}{M_{gross} \cdot k_m \cdot r_{tire} \cdot g}$ | g <sub>max</sub> = 4.33       | $\operatorname{RPM}_{\operatorname{motor}} \coloneqq \frac{\operatorname{Power}_{\max}}{\operatorname{T}_{\max} \cdot 2 \cdot \pi}$ |  |  |
| $\operatorname{max} = \operatorname{max} + \operatorname$ |                                                            |                                                                                         |                               |                                                                                                                                     |  |  |

### <u>Clutching - The Most Critical Element in Top Fuel Dragster Performance</u>

In drag racing, the clutch acts as the buffer between the power produced by the engine and the tires trying to apply it to the track surface. These cars, especially the fuel cars, are making so much power that it can't possibly be put to the ground all at once. There has to be something to take that power and apply it progressively through the RPM range or through the run, and allow the car to launch from a dead stop with a percentage of the engine's power then apply 100% of it when possible.

# IV. Macro Model of Motor Dynamics: Tire Velocity is v, ωk is RPM/1000

## Clutch, Tire, Down-Force Traction Model: Perfect Clutching - Constant Torque

Simple Step Model of Tire Traction (Assume perfect weight distribution, aerodynamics & wing design--> accleration ~ 4g) Tires do not have perfect grip, they may slip. Vehicle acceleration,  $a_{veh}$  is limited to the  $\mu$  = tire road force/vehicle weight tire traction (tire<sub>max\_g</sub>) ~ 4g. The tire rpm x GR = motor rpm, but because of slip, **initially**, tire velocity can be greater than vehicle velocity. When critical velocity is attained, the body and tire aerodynamics apply down force to increase  $\mu > 4$ .

**RPM x r<sub>tire</sub>/GR > v<sub>tire</sub> = v<sub>vehicle</sub>** <u>Case #1 Model Assumptions</u> <u>Perfect Clutching - Clutch Spin for max Torque.</u> Clutching to allow max motor torque to be applied to tires/road. Perfect Tire.

Acceleration initially jumps to max Torque, that is, to 4.3 g.

 $\frac{\text{RPM x r_{tire}}}{\text{GR}} = \frac{\text{V}_{tire}}{\text{W}_{tire}} = \frac{\text{V}_{tire}}{\text{W}_{tire}}$ 

<u>Case #2 Model Assumptions</u> <u>No Clutch or Tire Spin - Applied Torque & Power Follow the RPM Cun</u> Motor rpm has no slip to vehicle speed.

Acceleration rises, peaks at **4.3 g, and then falls**.

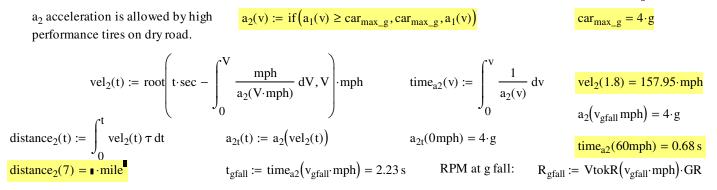
### Performance Model This model ignores various power losses and the boost in acceleration from aerodynamic down force

| Angular Velocity Symbol, $\Omega$ (units of radians/second) $\Omega(\omega) := 2\pi 1000 \cdot \omega \cdot \min^{-1}$ RPM/1000 Symbol, $\omega_k$ RPM := $\min^{-1}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Angular Vel Ω @Max Power:                                                                                                                                             | $\Omega_{\text{Pmax}} := \text{Power}_{\text{max}} \cdot \text{T}_{\text{max}}^{-1} \qquad \text{RPM}_{\text{Pmax}} := \frac{\Omega_{\text{Pmax}}}{2 \cdot \pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\text{RPM}_{\text{Pmax}} = 7245.38 \cdot \text{RPM}$                                                                                          |  |  |  |
| Convert velocity to RPM                                                                                                                                               | $VtoRPM(v_v) := v_v \cdot (1000 \cdot 2 \cdot \pi \cdot r_{tire} \cdot RPM)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\omega_{\text{Pfall}} := \text{RPM}_{\text{Pmax}} \cdot \text{k}^{-1} = 7.25 \cdot \text{RPM}$                                                |  |  |  |
| Tire Velocity at Torque Fall:                                                                                                                                         | $\mathbf{v}_{\mathrm{Tfall}} \coloneqq \mathrm{RPM}_{\mathrm{Pmax}} \cdot 2 \cdot \pi \cdot \mathbf{r}_{\mathrm{tire}} \cdot \mathrm{GR}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $v_{Tfall} = 269.44 \cdot mph$                                                                                                                 |  |  |  |
| Tire Velocity to kRPM:                                                                                                                                                | $VtokR(v_t) := v_t \cdot (k \cdot 2 \cdot \pi \cdot r_{tire} \cdot RPM)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $VtokR(60 \cdot mph) \cdot GR = 1.61$ $\theta := 0$                                                                                            |  |  |  |
| Road Resistance, Ft:                                                                                                                                                  | $Ft(v_v) := M_{gross} \cdot g \cdot [T_{hys} \cdot v_v \cdot sin(\theta) + (RR_{tire} + RR_{road}) \cdot (RR_{tire} + RR$ | $\cos(\theta) + \sin(\theta)$ RPM <sub>pmax</sub> for Max Power:                                                                               |  |  |  |
| Air Drag Force, Fa:                                                                                                                                                   | $Fa(v_{v}) := 0.5 \cdot \rho \cdot Ad \cdot \left[ \left( v_{v} + Vw \right)^{2} \cdot Cd + Cd_{cw} \cdot \left( V_{cw} \right)^{2} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b><u>Note</u>:</b> For Drag and Road Resistance, approximate vehicle with v <sub>tire</sub> . At                                              |  |  |  |
| Total Opposing Force, Fo:                                                                                                                                             | $Fo(v_v) := Fa(v_v) + Ft(v_v) \qquad Fo(60 \cdot mph) = 120.16 \cdot mph$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lbf <60mph Compared to Ftire, Fo is small.                                                                                                     |  |  |  |
| Torque/Force Falloff Curve:                                                                                                                                           | $T_{PLt}(\omega_k) := Power_{max} \cdot \Omega(\omega_k)^{-1} \qquad T_m(\omega_k) := i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f\left(\omega_{k} \cdot RPM \geq \omega_{Pfall}, T_{PLt}(\omega_{k}), T_{max}\right)$                                                         |  |  |  |
| Tm is Torque of motor                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Gamma_{\rm m}(\omega_{\rm k})\cdot\mathbf{k}\cdot2\cdot\mathbf{\pi}\cdot\omega_{\rm k}\cdot\mathrm{RPM}$ $P_{\rm m}(8) = 8000\mathrm{hp}$    |  |  |  |
| Fmot, Tractive Force from motor, not from slipping tires:                                                                                                             | $T_{mv}(v_t) := T_m(VtokR(v_t) \cdot GR) \qquad F_{mot}(v_t) :=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\text{GR}}{r_{\text{tire}}} \cdot T_{\text{mv}}(v_{\text{t}}) \qquad F_{\text{mot}}(1\text{mph}) = 1.11 \times 10^{4} \cdot \text{lbf}$ |  |  |  |

# Solve for Velocity, Acceleration, and Distance versus Time

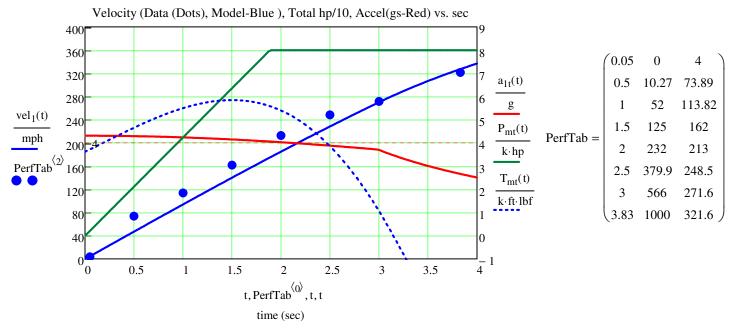
We are using Mathcad 14, a Computer Math Program, to do the Calculations: http://www.ptc.com/product/mathcad/free-trial

#### Case 1: Perfect Grip Tires at Maximum Motor Power, No limit on Coefficient of Tire Friction Newton's Third Law of Motion:

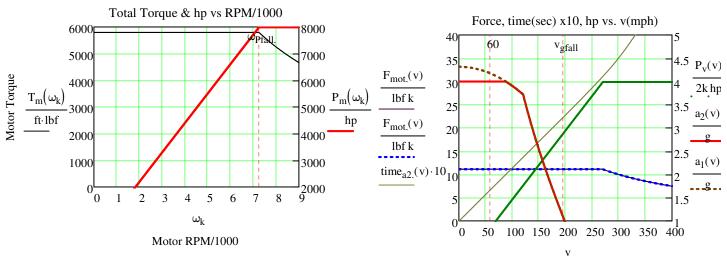

$$a_{1}(v) \coloneqq \frac{F_{mot}(v) - Fo(v)}{k_{m} \cdot M_{oross}} \qquad a_{1Tmax} \coloneqq \frac{T_{max} \cdot GR}{M_{gross} \cdot k_{m} \cdot r_{tire}} = 4.33 \cdot g$$

$$\bigvee_{w} \coloneqq 0 \cdot mph \qquad vel_{1}(t) \coloneqq root \left( t \cdot sec - \int_{0}^{V} \frac{mph}{a_{1}(V \cdot mph)} dV, V \right) \cdot mph \qquad time_{a1}(v) \coloneqq \int_{0}^{V} \frac{1}{a_{1}(v)} dv \qquad \frac{time_{a1}(74mph) = 0.78 \, s}{vel_{1}(3.83) = 327.44 \cdot mpl}$$

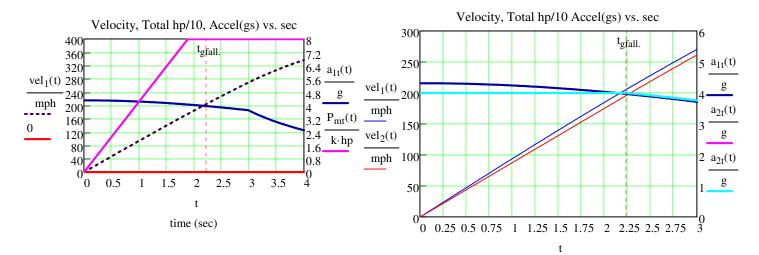
$$v_{gfall} \coloneqq root(a_{1}(V \cdot mph) - car_{max\_g}, V) = 196.06 \qquad time_{a1}(60mph) = 0.64 \, s \qquad a_{1t}(t) \coloneqq a_{1}(vel_{1}(t))$$


$$Velocity g fall, a \le 1.4g \qquad a_{1}(v_{gfall} mph) = 4 \cdot g \qquad a_{1t}(0) = 4.32 \cdot g$$

#### Case 2: High Performance 4 g Tires & Motor Drive Limited Accel < 4 g/ No Spin, but Max Power




# V. Model Results and Validation: Matches Data


The difference between the data (dots) and Simulation Model is that the Model does not account for the aerodynamic down forces which give a boost in acceleration above 60 mph.



# **VI.** Performance Curves







time (sec)


# IX. Tire Friction (Composition and Width)

**Coefficient of Static Friction** ( $\mu$ ) is the ratio of Tire Road Force to Vehicle Weight. Values of  $\mu$  for Conventional Car tire On: Asphalt 0.72, Car tire Grass 0.35.

Top Fuel drag car tires are getting a coefficient of friction well over 4.5. How is this possible?

# This material came from:http://insideracingtechnology.com/tirebkexerpt1.htmSee Mathcad/EVs/Tire Friction.docRubber generates friction in three major ways:adhesion, deformation, and wear.

Rubber in contact with a <u>smooth surface</u> (glass is often used in testing) generates friction forces mainly by <u>adhesion</u>. When rubber is in contact with a <u>rough surface</u>, another mechanism, <u>deformation</u>, comes into play. Movement of a rubber slider on a rough surface results in the <u>deformation of the rubber by high points on</u> the surface called irregularities or <u>asperities</u>. A load on the rubber slider causes the asperities to <u>penetrate</u> the rubber and the rubber drapes over the asperities. The <u>energy needed</u> to move the asperities in the rubber comes from the <u>differential pressure</u> across the asperities as shown in Fig. 3.4, where a rubber slider moves on an irregular surface at speed V.



#### **Tearing and Wear**

As deformation forces and sliding speeds go up, local stress can exceed the tensile strength of the rubber, especially at an increase in local stress near the point of a sharp irregularity. High local stress can deform the internal structure of the rubber past the point of elastic recovery. When polymer bonds and crosslinks are stressed to failure the material <u>can't recover completely</u>, and this can cause <u>tearing</u>. Tearing absorbs energy, resulting in additional friction forces in the contact surface.

Wear is the ultimate result of tearing.

Ftotal = Fadhesive + Fdefformation + Fwear

### **Deformation Friction and Viscoelasticity**

Rubber is elastic and conforms to surface irregularities. But rubber is also viscoelastic; it doesn't rebound fully after deformation.

#### **Hysteresis**

Hysteresis, or energy loss, in rubber.

where there is **some sliding** between the rubber and an irregular surface. If the **rubber recovers slowly** from the passing irregularity as in the high-hysteresis rubber, it **can't push on** the downstream surfaces of the irregularities **as hard** as it pushes on the upstream surfaces. This **pressure difference** between the **upstream and downstream faces of the irregularity** results in **friction forces** even when the surfaces are lubricated.

<u>Wide Tires:</u> It is true that wider tires commonly have better traction. The main reason why this is so does not relate to contact patch, however, but to **composition. Soft compound tires** are required to be **wider in order for the side-wall to support the weight** of the car softer tires have a larger coefficient of friction, therefore better traction. A narrow, soft tire would not be strong enough, nor would it last very long. Wear in a tire is related to contact patch. Harder compound tires wear much longer, and can be narrower. They do, however have a lower coefficient of friction, therefore less traction. Among tires of the same type and composition, here is no appreciable difference in 'traction' with different widths. Wider tires, assuming all other factors are equal, commonly have stiffer side-walls and experience less roll. This gives better cornering performance.

Friction is proportional to the normal force of the asphalt acting upon the car tires. This force is simply equal to the weight which is distributed to each tire when the car is on level ground. Force can be stated as Pressure X Area. For a wide tire, the area is large but the force per unit area is small and vice versa. The force of friction is therefore the same whether the tire is wide or not. However, asphalt is not a uniform surface. Even with steamrollers to flatten the asphalt, the surface is still somewhat irregular, especially over the with of a tire. Drag racers can therefore increase the probability or likelihood of making contact with the road by using a wider tir In addition a secondary benefit is that the wider tire increased the support base a

Friction force is independent of the apparent area of contact. For hard materials, this is nearly correct. The true area of contact varies with the applied load. The apparent area does not. If you can imagine the contact zone from a microscopic viewpoint, only a tiny portion of the apparent area actually touches. This tiny area is the true area of contact. But this applies to hard materials. It does not apply to elastomers, such as rubber. Tire tread rubber compounds vary greatly from one application to another. Race car tire tread compounds can be very soft, viscoelastic materials, while heavy truck tread rubber can be quite hard. In general, soft rubber materials have greater friction. With drag racing 'slicks,' the tire tread material literally sticks to the pavement--and the rubber is sheared from the tire. Clearly, the greater the apparent contact area, the greater this shear force. Cleanliness is important to getting the surfaces to 'stick.' This is one reason why drag racers have a 'burn-out' before each race (another is to raise the tire tread surface temperature). However, there is another reason for wide tire tread s on some road and track racing cars. They need tread volume to provide enough wear life. Tires wear rapidly under racing conditions. Some long races wear out several sets of tires. There are trade-offs with traction and tread life. That is why heavy truck tire tread compounds do not have as much friction as those used on passenger cars. However, truck tire tread compounds provide longer wear life and less heat build-up. Like many things in this world, tire tread choices involve compromises.